【题目】已知a>0,b>0,a3+b3=2.证明:
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.
科目:高中数学 来源: 题型:
【题目】2022年第24届冬奥会将在北京举行。为了推动我国冰雪运动的发展,京西某区兴建了“腾越”冰雪运动基地。通过对来“腾越”参加冰雪运动的100员运动员随机抽样调查,他们的身份分布如下: 注:将表中频率视为概率。
身份 | 小学生 | 初中生 | 高中生 | 大学生 | 职工 | 合计 |
人数 | 40 | 20 | 10 | 20 | 10 | 100 |
对10名高中生又进行了详细分类如下表:
年级 | 高一 | 高二 | 高三 | 合计 |
人数 | 4 | 4 | 2 | 10 |
(1)求来“腾越”参加冰雪运动的人员中高中生的概率;
(2)根据统计,春节当天来“腾越”参加冰雪运动的人员中,小学生是340人,估计高中生是多少人?
(3)在上表10名高中生中,从高二,高三6名学生中随机选出2人进行情况调查,至少有一名高三学生的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ,其中, 为左、右焦点,且离心率,直线与椭圆交于两不同点, .当直线过椭圆右焦点且倾斜角为时,原点到直线的距离为.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]
(Ⅰ)求椭圆的方程;
(Ⅱ)若,当面积为时,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|2x-1|-|x+1|.
(1)将f(x)的解析式写成分段函数的形式,并作出其图象;
(2)若a+b=1,对a,b∈(0,+∞),+≥3f(x)恒成立,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的上顶点为,且离心率为.
(1)求椭圆的方程;
(2)设是曲线上的动点,关于轴的对称点为,点,直线与曲线的另一个交点为(与不重合),过作直线,垂足为,是否存在定点,使为定值?若存在求出的坐标,不存在说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线,圆,已知直线与圆相切,且与抛物线相交于两点.
(Ⅰ)求直线在轴上截距的取值范围;
(Ⅱ)设是抛物线的焦点,,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com