精英家教网 > 高中数学 > 题目详情

【题目】2021年起,我省将实行“3+1+2”高考模式,某中学为了解本校学生的选考情况,随机调查了100位学生,其中选考化学或生物的学生共有70位,选考化学的学生共有40位,选考化学且选考生物的学生共有20位.若该校共有1500位学生,则该校选考生物的学生人数的估计值为(

A.300B.450C.600D.750

【答案】D

【解析】

先求出100位样本中选考生物没有选考化学的学生共有位,根据已知选考化学且选考生物的学生共有20位,得到选考生物的学生有位,计算比值估计选考生物的总体人数.

因为选考化学或生物的学生共有70位,选考化学的学生共有40位,

所以选考生物没有选考化学的学生共有位,

又选考化学且选考生物的学生共有20位,

所以选考生物的学生有

所以在100位学生中选考生物的占比为

该校共有1500位学生,则该校选考生物的学生人数的估计值为

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的单调区间;

2)若不等式时恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论函数的单调性;

2)若函数存在两个极值点(其中),且的取值范围为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)若与平行的直线与曲线交于两点.且在轴的截距为整数,的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱的所有棱长都是2分别是的中点.

1)求证:平面

2)求直线与平面所成角的正弦值;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求证:

(2)若有三个零点时,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中记载:刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱EF//平面ABCDEF与平面ABCD的距离为2,该刍甍的体积为(

A.6B.C.D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为双曲线的一个焦点,过的一条渐近线的垂线,垂足为点的另一条渐近线交于点,若,则的离心率为(

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆

(1)若椭圆的离心率为,求的值;

(2)若过点任作一条直线与椭圆交于不同的两点,在轴上是否存在点,使得, 若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案