分析 根据向量加法的三角形法则,可得$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CP}$=$\frac{1}{3}(\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{AP})$,再由底面ABCD为平行四边形,可得m,n的值,进而得到答案.
解答 解:∵M为线段PC上的点,且满足CM=$\frac{1}{2}$MP,底面ABCD为平行四边形,
∴$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CP}$=$\frac{1}{3}(\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{AP})$=$\frac{1}{3}(-\overrightarrow{AD}-\overrightarrow{AB}+\overrightarrow{AP})$=$-\frac{1}{3}\overrightarrow{AD}-\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AP}$,
∴$m=-\frac{1}{3},n=\frac{1}{3}$,
故m+n=0,
故答案为:0
点评 本题考查的知识点是空间向量的运算,空间向量加法的三角形法则,难度不大,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{9π}{2}$ | B. | 36π | C. | 9π | D. | $\frac{3}{2}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com