20£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬FÊÇÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µã£¬MÊÇÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã£¬¹ýM£¬F£¬OÈýµãµÄÔ²µÄÔ²ÐÄΪQ£¬µãQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ$\frac{3}{4}$£®¹ý¶¨µãD£¨0£¬p£©×÷Ö±ÏßÓëÅ×ÎïÏßCÏཻÓÚA£¬BÁ½µã£®
£¨I£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨II£©ÈôµãNÊǵãD¹ØÓÚ×ø±êÔ­µãOµÄ¶Ô³Æµã£¬Çó¡÷ANBÃæ»ýµÄ×îСֵ£»
£¨¢ó£©ÊÇ·ñ´æÔÚ´¹Ö±ÓÚyÖáµÄÖ±Ïßl£¬Ê¹µÃl±»ÒÔADΪֱ¾¶µÄÔ²½ØµÃµÄÏÒ³¤ºãΪ¶¨Öµ£¿Èô´æÔÚ£¬Çó³ölµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨I£©ÒÀÌâÒâÖªF£¨0£¬$\frac{p}{2}$£©£¬ÓÉÌâÒâÖª$\frac{3p}{4}$=$\frac{3}{4}$£¬ÓÉ´ËÄÜÇó³öÅ×ÎïÏßCµÄ·½³Ì£®
£¨II£©ÒÀÌâÒâ¿ÉÖªµãNµÄ×ø±ê£¬¿ÉÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Éè³öÖ±ÏßABµÄ·½³Ì£¬ÓëÅ×ÎïÏßÁªÁ¢ÏûÈ¥y£¬¸ù¾ÝΤ´ï¶¨ÀíÇóµÃx1+x2ºÍµÄx1x2±í´ïʽ£¬´úÈëÈý½ÇÐÎÃæ»ý¹«Ê½ÖУ¬¿ÉµÃk=0ʱ¡÷ANBÃæ»ýÓÐ×îСֵ£¬²¢ÇÒÇó³ö×îСֵ£®
£¨¢ó£©¼ÙÉèÂú×ãÌõ¼þµÄÖ±Ïßl´æÔÚ£¬Æä·½³ÌΪy=a£¬ÔòÒÔACΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-0£©£¨x-x1£©-£¨y-p£©£¨y-y1£©=0£¬½«Ö±Ïß·½³Ìy=a´úÈëµÃx2-x1x+£¨a-p£©£¨a-y1£©=0£¬Ôò|x1-x2|2=4[a-$\frac{p}{2}$£©y1+a£¨p-a£©]£®ÓÉ´ËÈëÊÖÄܹ»Çó³öÅ×ÎïÏßµÄͨ¾¶ËùÔÚµÄÖ±Ïߣ®

½â´ð ½â£º£¨I£©Å×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µãF£¨0£¬$\frac{p}{2}$£©£¬
Ô²ÐÄQÔÚÏ߶ÎOFµÄ´¹Ö±Æ½·ÖÏßy=$\frac{p}{4}$ÉÏ£®
ÒòΪÅ×ÎïÏßCµÄ×¼Ïß·½³ÌΪy=-$\frac{p}{2}$£¬
ËùÒÔ$\frac{3p}{4}$=$\frac{3}{4}$£¬¼´p=1£®
Òò´ËÅ×ÎïÏßCµÄ·½³ÌΪx2=2y£®
£¨II£©ÒÀÌâÒâµÃ£ºµãNµÄ×ø±êΪN£¨0£¬-1£©£¬¿ÉÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+1£¬
Ö±Ïß·½³ÌÓëx2=2yÁªÁ¢£¬ÏûÈ¥yµÃx2-2kx-2=0£¬
ËùÒÔÓÉΤ´ï¶¨ÀíµÃx1+x2=2k£¬x1x2=-2£®

ÓÉͼ¿ÉµÃ£ºS¡÷ABN=S¡÷BCN+S¡÷ACN=|x1-x2|=2$\sqrt{{k}^{2}+2}$£¬
¡àµ±k=0£¬£¨S¡÷ABN£©min=2$\sqrt{2}$£»
£¨¢ó£©¼ÙÉèÂú×ãÌõ¼þµÄÖ±Ïßl´æÔÚ£¬Æä·½³ÌΪy=a£¬ÔòÒÔACΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-0£©£¨x-x1£©+£¨y-p£©£¨y-y1£©=0£¬
½«Ö±Ïß·½³Ìy=a´úÈëµÃx2-x1x+£¨a-p£©£¨a-y1£©=0£¬
Ôò|x1-x2|2=4[a-$\frac{p}{2}$£©y1+a£¨p-a£©]£®
ÉèÖ±ÏßlÓëÒÔACΪֱ¾¶µÄÔ²µÄ½»µãΪP£¨x3£¬y3£©£¬Q£¨x4£¬y4£©£¬
ÔòÓÐ|PQ|2=|x3-x4|2=4[a-$\frac{p}{2}$£©y1+a£¨p-a£©]£®
Áîa-$\frac{p}{2}$=0£¬µÃa=$\frac{p}{2}$£¬´Ëʱ|PQ|=pΪ¶¨Öµ£¬¹ÊÂú×ãÌõ¼þµÄÖ±Ïßl´æÔÚ£¬Æä·½³ÌΪy=$\frac{p}{2}$£¬
¼´Å×ÎïÏßµÄͨ¾¶ËùÔÚµÄÖ±Ïߣ®

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏß·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄµãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬¿¼²é×ÛºÏÔËÓÃÊýѧ֪ʶ½øÐÐÍÆÀíÔËËãµÄÄÜÁ¦ºÍ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ö±½Ç×ø±êϵÖУ¬·½³Ì|x|•y=1±íʾµÄÇúÏßÊÇ£¨¡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Âú×ã²»µÈʽ3x£¼$\frac{1}{27}$µÄʵÊýxµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬-3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªº¯Êýy=f£¨x£©ÎªÆ溯Êý£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©=x2-2x+3£¬Ôòf£¨-1£©=-2£¬µ±x£¼0ʱ£¬f£¨x£©=-x2-2x-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®µÈ²îÊýÁÐ{an}ÖÐan£¾0£¬ÇÒa1+a2+¡­+a10=30£¬Ôòa5+a6=£¨¡¡¡¡£©
A£®3B£®6C£®9D£®36

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬FÊÇÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µã£¬MÊÇÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã£¬¹ýM£¬F£¬OÈýµãµÄÔ²µÄÔ²ÐÄΪQ£¬µãQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ$\frac{3}{2}$£®
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨¢ò£©¹ýµãFµÄÖ±Ïß½»¹ì¼£CÓÚA£¬BÁ½µã£¬½»Å×ÎïÏßCµÄ×¼ÏßlÓÚµãM£¬ÒÑÖª$\overrightarrow{MA}={¦Ë_1}\overrightarrow{AF}$£¬$\overrightarrow{MB}={¦Ë_2}\overrightarrow{BF}$£¬Çó¦Ë1+¦Ë2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÒ»¸öÖ±ÈýÀâÖùµÄ²àÀⳤµÈÓÚ1£¬ËüµÄ¸©ÊÓͼÊÇÒ»¸öб±ß³¤Îª2µÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÕýÊÓͼµÄÃæ»ýΪ1£¬ÄÇô²àÊÓͼÃæ»ýΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔڵȲîÊýÁÐ{an}ÖУ¬a12=33£¬a22=63£¬ÇódºÍa32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Çó¹ýµãP£¨2£¬4£©£¬²¢ÇÒÓëÔ²£¨x-1£©2+£¨y+3£©2=1ÏàÇеÄÖ±Ïß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸