分析 先分析M,N所表示的平面区域,并在平面直角坐标系中用图形表示出来,最后结合平面几何的知识解决问题.
解答 解:因为f(x)=x2+2x-3=(x+1)2-4,f(y)=(y+1)2-4,
则f(x)+f(y)=(x+1)2+(y+1)2-8,f(x)-f(y)=(x+1)2-(y+1)2.
∴M={(x,y)=(x+1)2+(y+1)2≤8},
N={(x,y)||y+1|≤|x+1|}.
故集合M∩N所表示的平面区域为两个扇形,其面积为圆面积的一半,即为4π.
故答案为:4π.
点评 求限制条件(一般用不等式组来表示)所表示平面区域的面积,一般分为如下步骤:①化简不等式②分析不等式表示的平面区域③画出草图分析可行域④结合平面几何知识求出面积.
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{12}$ | B. | $\frac{1}{2}$ | C. | $\frac{7}{12}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | $\sqrt{a}$>$\sqrt{b}$ | C. | ab>ba | D. | logba>logab |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 6 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com