精英家教网 > 高中数学 > 题目详情

【题目】对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数p,使其值域为,则称函数渐近函数

1)证明:函数是函数的渐近函数,并求此时实数p的值;

2)若函数,证明:当时,不是的渐近函数.

【答案】1)证明见解析,;(2)证明见解析;

【解析】

1)通过令,利用渐近函数的定义逐条验证即可;(2)通过记,结合渐近函数的定义可知,问题转化为求时,的最大值问题,进而计算可得的范围,从而证明结论.

1)根据题意,令

所以

所以在区间上单调递减,且

所以

于是函数是函数的渐近函数,

此时实数.

2)即

假设函数的渐近函数是

则当时,,即

令函数

时,

时,,在区间上单调递增,

所以

所以

所以当时,不是的渐近函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若存在两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,其中m是不等于零的常数.

1时,直接写出的值域;

2)求的单调递增区间;

3)已知函数,定义:,其中,表示函数上的最小值,表示函数上的最大值.例如:,则.时,恒成立,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1是函数数的导函数,记,若在区间上为单调函数,求实数a的取值范围;

(2)设实数,求证:对任意实数,总有成立.

附:简单复合函数求导法则为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且,若直线与椭圆交于不同两点都在轴上方),且.

1)求椭圆的标准方程;

2)当为椭圆与轴正半轴的交点时,求直线的方程;

3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出定点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,并且,数列满足:,记数列的前项和为

1)求数列的通项公式及前项和公式

2)求数列的通项公式及前项和公式

3)记集合,若的子集个数为16,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人同时参加一次数学测试,共有道选择题,每题均有个选项,答对得分,答错或不答得分.甲和乙都解答了所有的试题,经比较,他们只有道题的选项不同,如果甲最终的得分为分,那么乙的所有可能的得分值组成的集合为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动点到定点与定直线的距离之和为4.

(1)求点的轨迹方程,并画出方程的曲线草图.

(2)记(1)得到的轨迹为曲线,若曲线上恰有三对不同的点关于点对称,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列,等差数列满足,且的等比中项.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

同步练习册答案