精英家教网 > 高中数学 > 题目详情
19、已知sinθ+cosθ=a,sinθ-cosθ=b,求证:a2+b2=2.
分析:对题设中的两个等式,等号两边分别平方,后然后相加即可证明原式.
解答:证明:∵sinθ+cosθ=a,sinθ-cosθ=b,
∴a2=sin2θ+cos2θ+2sinθcosθ=1+2sinθcosθ,
b2=sin2θ+cos2θ-2sinθcosθ=1-2sinθcosθ,
∴a2+b2=1+2sinθcosθ+1-2sinθcosθ=2;
故原式得证.
点评:本题主要考查了三角函数恒等式的证明.解题的关键是利用同角三角函数的基本关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+cosα=
7
13
(0<α<π),则tanα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=
2
,求sin2α的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
15
且0<α<π,求值:
(1)sin3α-cos3α;  
(2)tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
2
2
(0<θ<π),则cos2θ的值为
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
15
,0<θ<π
,求下列各式的值:
(1)sinθ•cosθ
(2)sinθ-cosθ
(3)tanθ

查看答案和解析>>

同步练习册答案