精英家教网 > 高中数学 > 题目详情
1.设函数f(x)=ax3-bx2,若曲线y=f(x)在点(1,f(1))处的切线方程为y=-x+1,则当$-\frac{1}{2}≤x≤\frac{3}{2}$时,f(x)的取值范围是(  )
A.$[0,\frac{4}{27}]$B.$[0,\frac{3}{8}]$C.[-$\frac{9}{8}$,$\frac{4}{27}$]D.$[-\frac{9}{8},\frac{3}{8}]$

分析 由求导公式和法则求出f′(x),由导数的几何意义和切线方程列出方程,联立后求出a、b的值,求出f(x)、f′(x),由导数的符号求出函数的单调区间、极值,结合端点处的函数值求出函数的值域.

解答 解:由题意得,f′(x)=3ax2-2bx,
∵在点(1,f(1))处的切线方程为y=-x+1,
∴f′(1)=3a-2b=-1,且f(1)=a-b=0,解得a=b=-1,
∴f(x)=-x3+x2,f′(x)=-3x2+2x=x(-3x+2),
由f′(x)=0得,x=0或x=$\frac{2}{3}$,
∴当x∈(-$\frac{1}{2}$,0),($\frac{2}{3}$,$\frac{3}{2}$)时,f′(x)<0,则f(x)在(-$\frac{1}{2}$,0),($\frac{2}{3}$,$\frac{3}{2}$)上是减函数,
当x∈(0,$\frac{2}{3}$)时,f′(x)>0,则f(x)在(0,$\frac{2}{3}$)上是增函数,
∴函数的极小值是f(0)=0,极大值是f($\frac{2}{3}$)=$\frac{4}{27}$,
∵f($-\frac{1}{2}$)=$\frac{3}{8}$,f($\frac{3}{2}$)=$-\frac{9}{8}$,
∴函数的最大值是$\frac{3}{8}$,最小值是$-\frac{9}{8}$,即值域是$[-\frac{9}{8},\frac{3}{8}]$,
故选D.

点评 本题考查导数的几何意义,利用导数研究函数的单调性、极值、最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在三棱锥P-ABC中,PA⊥底面ABC,点D,E分别在棱PB、PC上,PA=AB=2,∠ABC=60°,∠BCA=90°,且DE∥BC.
(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)当点D为PB的中点时,求AD与平面PAC所成角的正切值;
(Ⅲ)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b=$\sqrt{6}$,A=$\frac{π}{4}$,若三角形有两解,则边a的取值范围为(  )
A.$(0,\sqrt{6})$B.$(1,\sqrt{6})$C.$(\sqrt{3},\sqrt{6})$D.$(\sqrt{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线准线的距离为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)是R上的偶函数,且在区间(-∞,0]上是减函数,令a=f(sin$\frac{2}{7}$π),b=f(cos$\frac{5}{7}$π),c=f(tan$\frac{5}{7}$π),则(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{y^2}{a^2}$-$\frac{x^2}{7}$=1(a>0)的一个焦点与抛物线y=$\frac{1}{16}$x2的焦点重合,则实数a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:数列{an}的前n项和为Sn,且2an-2n=Sn
(1)求证:数列{an-n•2n-1}是等比数列;
(2)求:数列{an}的通项公式;
(3)若数列{bn}中bn=$\frac{{({n^2}+19)•{2^n}}}{a_n}$,求:bn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设等差数列{an}的前n项和为Sn,若a1=-40,a6+a10=-10,则S8=-180.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.水平放置的△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为(  )
A.$\sqrt{2}$B.2C.4D.8

查看答案和解析>>

同步练习册答案