£¨ÎÄ£©ÒÑÖªÊýÁÐ{an}£¬Èç¹ûÊýÁÐ{bn}Âú×ãb1=a1£¬bn=an+an-1£¨n¡Ý2£¬n¡ÊN*£©£¬Ôò³ÆÊýÁÐ{bn}ÊÇÊýÁÐ{an}µÄ¡°Éú³ÉÊýÁС±£®
£¨1£©ÈôÊýÁÐ{an}µÄͨÏîΪÊýÁÐan=n£¬Ð´³öÊýÁÐ{an}µÄ¡°Éú³ÉÊýÁС±{bn}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{dn}µÄͨÏîΪÊýÁÐdn=2n+n£¬ÇóÊýÁÐ{dn}µÄ¡°Éú³ÉÊýÁС±{pn}µÄÇ°nÏîºÍΪTn£»
£¨3£©ÈôÊýÁÐ{cn}µÄͨÏʽΪcn=An+B£¬£¨A£¬BÊdz£Êý£©£¬ÊÔÎÊÊýÁÐ{cn}µÄ¡°Éú³ÉÊýÁС±{ln}ÊÇ·ñÊǵȲîÊýÁУ¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÄÇóºÍ,ÊýÁеÝÍÆʽ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉan=n£¬¿ÉµÃb1=a1=1£¬µ±n¡Ý2ʱ£¬bn=an+an-1=2n-1£¬¼´¿ÉµÃ³ö£®
£¨2£©ÓÉÊýÁÐdn=2n+n£¬ÊýÁÐ{dn}µÄ¡°Éú³ÉÊýÁС±£¬p1=d1=3£¬µ±n¡Ý2ʱ£¬pn=dn+dn-1=3¡Á2n-1+2n-1£®¿ÉµÃpn=
3£¬n=1
3¡Á2n-1+2n-1£¬n¡Ý2
£¬µ±n=1ʱ£¬T1=p1=3£¬µ±n¡Ý2ʱ£¬ÀûÓõȱÈÊýÁÐÓëµÈ²îÊýÁеÄÇ°nÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£®
£¨3£©ln=
A+B£¬n=1
2An+2B-A£¬n¡Ý2
£®µ±B=0ʱ£¬ln=2An-A£¬ln+1-ln=2A£¬¼´¿ÉÅжϳö£®µ±B¡Ù0ʱ£¬ÓÉÓÚl1=c1=A+B£¬l2=3A+2B£¬l3=5A+2B£¬ÅжÏl2-l1Óël3-l2ÊÇ·ñÏàµÈ¼´¿ÉµÃ³ö£®
½â´ð£º ½â£º£¨1£©¡ßan=n£¬
¡àb1=a1=1£¬µ±n¡Ý2ʱ£¬bn=an+an-1=n+n-1=2n-1£¬µ±n=1ʱҲ³ÉÁ¢£¬
¡àbn=2n-1£®
£¨2£©ÓÉÊýÁÐdn=2n+n£¬ÊýÁÐ{dn}µÄ¡°Éú³ÉÊýÁС±£¬
p1=d1=21+1=3£¬µ±n¡Ý2ʱ£¬pn=dn+dn-1=2n+n+£¨2n-1+n-1£©=3¡Á2n-1+2n-1£®
¡àpn=
3£¬n=1
3¡Á2n-1+2n-1£¬n¡Ý2
£¬
µ±n=1ʱ£¬T1=p1=3£¬
µ±n¡Ý2ʱ£¬
Tn=3+
3¡Á2(2n-1-1)
2-1
+
(n-1)(3+2n-1)
2

=3+3¡Á2n-6+£¨n-1£©£¨n+1£©
=3¡Á2n+n2-4£®
£¨3£©ln=
A+B£¬n=1
2An+2B-A£¬n¡Ý2
£®
µ±B=0ʱ£¬ln=2An-A£¬ln+1-ln=2A£¬¡àÊýÁÐ{cn}µÄ¡°Éú³ÉÊýÁС±{ln}ÊǵȲîÊýÁУ®
µ±B¡Ù0ʱ£¬ÓÉÓÚl1=c1=A+B£¬l2=3A+2B£¬l3=5A+2B£¬´Ëʱl2-l1=2A+B£¬l3-l2=2A£¬
¡ß2A¡Ù2A+B£¬
¡àÊýÁÐ{cn}µÄ¡°Éú³ÉÊýÁС±{ln}²»ÊǵȲîÊýÁУ®
×ÛÉϿɵ㺵±B=0ʱ£¬ÊýÁÐ{cn}µÄ¡°Éú³ÉÊýÁС±{ln}ÊǵȲîÊýÁУ®
µ±B¡Ù0ʱ£¬ÊýÁÐ{cn}µÄ¡°Éú³ÉÊýÁС±{ln}²»ÊǵȲîÊýÁУ®
µãÆÀ£º±¾Ì⿼²éÁËж¨Òå¡°Éú³ÉÊýÁС±¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°ÆäÇ°nÏîºÍ¹«Ê½£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ãan=2an+1-an+2£¨n¡ÊN*£©£¬Sn=a1+a2+¡­+an£¬a2=-1£¬S15=75£¬Ôòa5=£¨¡¡¡¡£©
A¡¢5B¡¢4C¡¢2D¡¢1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lnx+ax2£¨a¡ÊR£©
£¨1£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôxf¡ä£¨x£©-f£¨x£©£¾0ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ë«ÇúÏß4x2-y2+64=0µÄÒ»¸ö½¹µãFµ½ËüµÄÒ»Ìõ½¥½üÏß¾àÀëΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µãMÓëµãF£¨3£¬0£©µÄ¾àÀë±ÈËüµ½Ö±Ïßx+5=0µÄ¾àÀëС2£¬ÔòµãMµÄ¹ì¼£·½³ÌΪ£¨¡¡¡¡£©
A¡¢y2=-12x
B¡¢y2=6x
C¡¢y2=12x
D¡¢y2=-6x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£®ÒÔ¼«µãΪƽÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ£º
x=m+
2
2
t
y=
2
2
t
£¨tÊDzÎÊý£©£®
£¨¢ñ£© ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬ÇÒ|AB|=
14
£¬ÊÔÇóʵÊýmÖµ£®
£¨¢ò£© ÉèM£¨x£¬y£©ÎªÇúÏßCÉÏÈÎÒâÒ»µã£¬Çóx+yµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â²»µÈʽ£º|2x+1|-|x-4|£¾3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Òåmin[f£¨x£©£¬g£¨x£©]=
f(x)£¬f(x)¡Üg(x)
g(x)£¬f(x)£¾g(x)
£¬Èôº¯Êýf£¨x£©=x2+tx+sµÄͼÏó¾­¹ýÁ½µã£¨x1£¬0£©£¬£¨x2£¬0£©£¬ÇÒ´æÔÚÕûÊým£¬Ê¹µÃm£¼x1£¼x2£¼m+1³ÉÁ¢£¬Ôò£¨¡¡¡¡£©
A¡¢min[f£¨m£©£¬f£¨m+1£©]£¼
1
4
B¡¢min[f£¨m£©£¬f£¨m+1£©]£¾
1
4
C¡¢min[f£¨m£©£¬f£¨m+1£©]=
1
4
D¡¢min[f£¨m£©£¬f£¨m+1£©]¡Ý
1
4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=sin£¨2x+
¦Ð
6
£©+sin£¨2x-
¦Ð
6
£©+2cos2x+a£¬µ±x¡Ê[-
¦Ð
4
£¬
¦Ð
4
]ʱ£¬f£¨x£©µÄ×îСֵΪ-3£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸