精英家教网 > 高中数学 > 题目详情

【题目】已知ABC为等腰直角三角形, 分别是边的中点,现将沿折起,使平面 分别是边的中点,平面 分别交于 两点.

(1)求证:

(2)求二面角的余弦值;

(3)的长.

【答案】(1)见解析,(2) (3)

【解析】试题分析:(1)ED∥平面BCHEDHI又因为EDBC,所以IHBC;(2建立空间直角坐标系,n1(1,-1,1)n2(0,1,2),求出二面角;(3λ·n20,解得λ所以AGAF.

试题解析:

(1)证明:因为DE分别是边ACAB的中点,所以EDBC.

因为BC平面BCHED平面BCH,所以ED∥平面BCH.

因为ED平面BCHED平面AED,平面BCH平面AEDHI,所以EDHI.

又因为EDBC,所以IHBC.

(2)如图,建立空间直角坐标系,由题意得,D(0,0,0)E(20,0)A(0,0,2)F(3,1,0)C(0,2,0)H(0,0,1)B(4,2,0)(2,0,2)(1,1,0)(0,-21)(1,0,0)

设平面AGI的法向量为n1(x1y1z1)

z11,解得x11y1=-1,则n1(1,-1,1)

设平面CIG的法向量为n2(x2y2z2)

z22,解得y21,则n2(0,1,2)

所以cosn1n2〉=,所以二面角AGIC的余弦值为.

(3)(2)知,(3,1,-2)

λ(3λλ,-2λ)0<λ<1

(0,0,-1)(3λλ,-2λ)(3λ,-λ2λ1),由·n20,解得λ

AGAF.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆的左、右焦点分别为 也是抛物线的焦点,点在第一象限的交点,且.

(1)求的方程;

(2)平面上的点满足,直线,且与交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).且曲线y=f(x)在点(1,f(1))处的切线平行于x轴.

(1)求a的值;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在多面体中,四边形是边长为的正方形, 为等腰梯形,且 .

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆内切并且与圆外切,圆心的轨迹为曲线.

(Ⅰ)求的方程;

(Ⅱ)已知曲线轴交于两点,过动点的直线与交于 (不垂直轴),过作直线交于点且交轴于点,若构成以为顶点的等腰三角形,证明:直线 的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:min)的频率分布直方图,若将日均课外阅读时间不低于60 min的学生称为“书虫”,低于60 min的学生称为“懒虫”,

(1)求x的值并估计全校3 000名学生中“书虫”大概有多少名学生?(将频率视为概率)

(2)根据已知条件完成下面2×2的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“书虫”与性别有关:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:

(Ⅰ)试估计平均收益率;

(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组的对应数据:

据此计算出的回归方程为.

(i)求参数的估计值;

(ii)若把回归方程当作的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面结论正确的是( )

①“所有2的倍数都是4的倍数,某数是2的倍数,则一定是4的倍数”,这是三段论推理,但其结论是错误的.

②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.

③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.

④一个数列的前三项是1,2,3,那么这个数列的通项公式必为.

A. ①③ B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如表:

网购金额

(单位:千元)

频数

频率

3

9

15

18

合计

60

若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为.

(1)确定的值,并补全频率分布直方图;

(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.

查看答案和解析>>

同步练习册答案