精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数.

1)若函数在区间上存在零点,求实数p的取值范围;

2)问是否存在常数,使得当时,的值域为区间D,且D的长度为.

(注:区间 的长度为.

【答案】1–20≤p≤12;(2)存在常数q= 8q= 9,当x∈[q10]时,的值域为区间,且的长度为12–q

【解析】

1)利用零点存在性定理列出关于q的不等式,然后再利用不等式知识求解即可;(2)先利用单调性求出函数的值域,再利用区间长度列出关于q的方程,求解即可。

解:(1二次函数f(x)=x2– 16x+p+ 3的对称轴是函数在区间上单调递减,则函数在区间上存在零点须满足……………2

(1 + 16 +p+ 3)(1 – 16 +p+ 3)≤0, 解得–20≤p≤12…………………4

时,即0≤q≤6时,

的值域为:[f(8)f(q)],即[p–61,q2–16q+p+ 3].

区间长度为q2– 16q+p+ 3 – (p– 61) =q2– 16q+ 64 =" 12" –q

q2– 15q+ 52 =" 0" ∴,经检验不合题意,舍去.……6

时,即6≤q<8时,的值域为:,即[p– 61p– 57]

区间长度为p– 57 – (p– 61) =" 4" =" 12" –qq= 8.经检验q= 8不合题意,舍去. …8

q≥8时,的值域为:[f(q)f(10)],即 [q2– 16q+p+3p– 57].

区间长度为p– 57 –(q2– 16q+p+ 3) = –q2– 16q– 60 =" 12" –q,

q2– 17q+ 72 =" 0" , ∴q= 8q= 9.经检验q= 8q= 9满足题意.

所以存在常数q= 8q= 9,当x∈[q10]时,的值域为区间,且的长度为12–q………………………10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班制定了数学学习方案:星期一和星期日分别解决个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”,则在一周中每天所解决问题个数的不同方案共有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥DABC中,ADDC,ACCB,AB=2AD=2DC=2,且平面ABD平面BCD,E为AC的中点.

(I)证明:ADBC;

(II)求直线 DE 与平面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,已知矩形ABCD满足AB=5,沿平行于AD的线段EF向上翻折(点E在线段AB上运动,点F在线段CD上运动),得到如图②所示的三棱柱.

⑴若图②中△ABG是直角三角形,这里G是线段EF上的点,试求线段EG的长度x的取值范围;

⑵若⑴中EG的长度为取值范围内的最大整数,且线段AB的长度取得最小值,求二面角的值;

⑶在⑴与⑵的条件都满足的情况下,求三棱锥A-BFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C是矩形,平面ABC⊥平面AA1C1CAB=2AC=1

1)求证:AA1⊥平面ABC

2)在线段BC1上是否存在一点D,使得ADA1B?若存在求出的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为

(Ⅰ)求的极坐标方程;

(Ⅱ)设点的极坐标为,求面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,,平面平面.

(1)求证:

(2)若,直线与平面所成角为的中点,求二面角的余弦值.

查看答案和解析>>

同步练习册答案