精英家教网 > 高中数学 > 题目详情

【题目】已知是函数的三个极值点,且,有下列四个关于函数的结论:①;②;③;④恒成立,其中正确的序号为__________

【答案】②③④

【解析】解答:

f′(x)=,(x>0),g(x)=kx,g′(x)=k

k1,则有x>0g′(x)>k>0g(x)(0,+∞)上递增,g(x)=0至多有一解,f′(x)=0至多有两解,不符合题意。

k>1,g(x)得单调性可知g(x)min=g(lnk)=klnk,要使函数f(x)有三个极值点,f′(x)=0恰有三个不等正实数根,g(x)min=kklnk<0

解得k>e,故①错;

又∵g(1)=ek<0,1是函数f(x)=lnx+x(kR)的一个极值点,x1<x2=1<x3,故②正确;

由上可得x1,x3g(x)=0的两个根,=kx1,=kx3

f(x1)=lnx1+x1=1+lnk,同理f(x3)=1+lnk,故③正确;

由以上推导可得f(x)(0,x1)递减,(x1,1)递增,(1,x3)上递减,(3,+∞)上递增。

f(x)min=f(x1)=f(x3)=1+lnk>1+lne=2,故④正确。

故答案为:②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 ,且方程 无实数根,下列命题:

1)方程 一定有实数根;

2)若 ,则不等式 对一切实数 都成立;

3)若 ,则必存在实数 ,使

4)若 ,则不等式 对一切实数 都成立.

其中,正确命题的序号是________________.(把你认为正确的命题的所有序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时, .

1)直接写出函数的增区间(不需要证明);

(2)求出函数 的解析式;

3)若函数 求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点为,右焦点为 为原点, 轴上的两个动点,且,直线分别与椭圆交于 两点.

 

(Ⅰ)求的面积的最小值;

(Ⅱ)证明: 三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调递减区间;

(2)当时,设函数.若存在区间,使得函数上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一片成熟森林的总面积为 (近期内不再种植),计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.

(1)求每年砍伐面积的百分比;

(2)到今年为止,该森林已砍伐了多少年?

(3)今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果从不包括大小王的52张扑克牌中随机抽取一张那么取到红心(事件A)的概率是取到方块(事件B)的概率是问:

(1)取到红色牌(事件C)的概率是多少?

(2)取到黑色牌(事件D)的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组共10人,利用假期参加义工活动,已知参加义工活动1次的有2人,2次的有4人,3次的有4人.现从这10人中随机选出2人作为该组代表参加座谈会.

(1)设为事件“选出的2人参加义工活动次数之和为4”,求事件发生的概率;

(2)设为选出的2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案