精英家教网 > 高中数学 > 题目详情
1.若平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.$\frac{5}{12}$πB.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{4}$

分析 求出$\overrightarrow{a}•\overrightarrow{b}$,代入夹角公式计算.

解答 解:∵($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,∴($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,即${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$=0,∴$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{a}$2=2,
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{\sqrt{2}}{2}$,∴$\overrightarrow{a},\overrightarrow{b}$的夹角是$\frac{π}{4}$.
故选:D.

点评 本题考查了平面向量的数量积运算及向量垂直的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.计算:cos$\frac{4π}{3}$-tan(-$\frac{π}{4}$)+sin$\frac{3π}{2}$+(-2)°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直线l与椭圆$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知向量$\overrightarrow{m}$=(ax1,by1),$\overrightarrow{n}$=(ax2,by2),若$\overrightarrow{m}⊥\overrightarrow{n}$,且椭圆离心率e=$\frac{\sqrt{2}}{2}$,又椭圆经过点($\frac{\sqrt{2}}{2}$,1),0为坐标原点.
(1)求椭圆的方程;
(2)求证:△AOB的面积为定值.
(3)若直线l在y轴上截距为1,在y轴上是否存在点P(0,λ)使得以PA,PB为邻边的平行四边形是菱形,如果存在,求出λ的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如右图所示,PA为圆O的切线,切点为A,AC是直径,M为PA的中点,MC与圆交于点B.
求证:(I)PM2=MB•MC
(Ⅱ)∠MBP+∠ACP=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如果函数y=y(x)由方程${∫}_{0}^{y}$etdt-${∫}_{0}^{x}$costdt=0所确定,则$\frac{dy}{dx}$=$\frac{cosx}{1+sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在长方体OADB-CA1D1B1中,OA=3,OB=4,OC=2,OI=OJ=OK=1,点E,F分别是DB,D1B1的中点.设$\overrightarrow{OI}$=$\overrightarrow{i}$,$\overrightarrow{OJ}$=$\overrightarrow{j}$,$\overrightarrow{OK}$=$\overrightarrow{k}$,试用向量$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$表示$\overrightarrow{O{D}_{1}}$、$\overrightarrow{O{A}_{1}}$、$\overrightarrow{OE}$、$\overrightarrow{OF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,在(0,+∞)上为增函数的是(  )
A.y=-x2B.$y={(\frac{1}{π})^x}$C.$y={log_{\frac{1}{2}}}x$D.$y=\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有下列五个命题:
①在平面内,F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是椭圆;
②“在△ABC中,∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件;
③“x=0”是“x≥0”的充分不必要条件;
④已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$是空间的一个基底,则向量$\overrightarrow a+\overrightarrow b,\overrightarrow a-\overrightarrow b,\overrightarrow c$也是空间的一个基底;
⑤直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}=-3$.
其中真命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司欲制作容积为16米3,高为1米的无盖长方体容器,已知该容器的底面造价是每平方米1000元,侧面造价是每平方米500元,记该容器底面一边的长为x米,容器的总造价为y元.
(1)试用x表示y;
(2)求y的最小值及此时该容器的底面边长.

查看答案和解析>>

同步练习册答案