【题目】已知函数在其定义域内有两个不同的极值点.
(1)求的取值范围.
(2)设的两个极值点为,证明
【答案】(1)(2)见解析
【解析】试题分析:(1)极值点转化为导函数零点,即在有两个不同根.变量分离为 ,利用导数可得函数在上单调减,在上单调增,根据趋势可得函数在上范围为,在上范围为,因此要有两解,需,(2)利用导数证明不等式关键是构造恰当的函数: 等价于 ,而由零点可得.代入化简得,令,则,因此构造函数,利用导数求其最小值为,由于,所以命题得证.
试题解析:(1)依题意,函数的定义域为,所以方程在有两个不同根.即方程在有两个不同根.
转化为,函数与函数的图象在上有两个不同交点
又,即时, , 时, ,
所以在上单调增,在上单调减,从而.
又有且只有一个零点是1,且在时, ,在时, ,
所以由的图象,要想函数与函数的图象在上有两个不同交点,只需,即
(2)由(1)可知分别是方程的两个根,即, ,
设,作差得, ,即.
原不等式等价于
令,则, ,
设, , ,
∴函数在上单调递增,∴,
即不等式成立,故所证不等式成立.
科目:高中数学 来源: 题型:
【题目】如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.
(1)求船的航行速度是每小时多少千米?
(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为、、三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).
(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着互联网的发展,移动支付(又称手机支付)越来越普通,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有个人.把这个人按照年龄分成5组:第1组,第2组,第3组,第4组,第5组,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.
(1)求 和的值,并根据频率分布直方图估计这组数据的众数;
(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x)=sin(2x+ ),下列命题: ①函数图象关于直线x=﹣ 对称;
②函数图象关于点( ,0)对称;
③函数图象可看作是把y=sin2x的图象向左平移个 单位而得到;
④函数图象可看作是把y=sin(x+ )的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变)而得到;其中正确的命题是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:(为参数).
(1)求曲线的直角坐标方程与曲线的普通方程;
(2)若用代换曲线的普通方程中的得到曲线的方程,若分别是曲线和曲线上的动点,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com