已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2时,≤,求的取值范围.
(Ⅰ); (Ⅱ)的取值范围为[1,].
解析试题分析:(Ⅰ)先由过点得出,再求在点导数,由导数几何意义知,从而解得;
(Ⅱ)设==()=, 由题设可得≥0,即, 令=0得,=,="-2," 对分3中情况讨论得出结果.
试题解析:(Ⅰ)由已知得,
而=,=,∴=4,=2,=2,="2;"
(Ⅱ)由(Ⅰ)知,,, 设函数
==(),==, 由题设可得≥0,即, 令=0得,=,="-2,"
(1)若,则-2<≤0,∴当时,<0,当时,>0,即在单调递减,在单调递增,故在=取最小值,而==≥0, ∴当≥-2时,≥0,即≤恒成立,
(2)若,则=, ∴当≥-2时,≥0,∴在(-2,+∞)单调递增,而="0," ∴当≥-2时,≥0,即≤恒成立,
(3)若,则==<0, ∴当≥-2时,
科目:高中数学 来源: 题型:解答题
(本小题满分共12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时,f(x)≤kg(x),求k的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若在处有极值,求的单调递增区间;
(Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(是自然对数的底数).
(1)若曲线在处的切线也是抛物线的切线,求的值;
(2)当时,是否存在,使曲线在点处的切线斜率与 在
上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将与接通.已知,,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设与所成的小于的角为.
(Ⅰ)求矩形区域内的排管费用关于的函数关系式;
(Ⅱ)求排管的最小费用及相应的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是实数,函数,和,分别是的导函数,若在区间上恒成立,则称和在区间上单调性一致.
(Ⅰ)设,若函数和在区间上单调性一致,求实数的取值范围;
(Ⅱ)设且,若函数和在以为端点的开区间上单调性一致,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com