【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:①里程计费:1元/公里;②时间计费:元/分.已知陈先生的家离上班公司公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为(分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示
将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为分.
(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于分钟的概率;
(2)若公司每月发放元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按天计算),并说明理由.(同一时段,用该区间的中点值作代表)
科目:高中数学 来源: 题型:
【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:
车型 报废年限 | 1年 | 2年 | 3年 | 4年 | 总计 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:,,,.
参考公式:相关系数,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.
(1)求一名顾客在一次摸奖活动中获得元的概率;
(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生的身体素质情况,现从我校学生中随机抽取10人进行体能测试,测试的分数(百分制)如茎叶图所示.根据有关国家标准,成绩不低于79分的为优秀,将频率视为概率.
(1)另从我校学生中任取3人进行测试,求至少有1人成绩是“优秀”的概率;
(2)从前文所指的这10人(成绩见茎叶图)中随机选取3人,记 表示测试成绩为“优秀”的学生人数,求的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产A、B两种产品,根据市场调查,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的平方根成正比,其关系如图2(注:单位是万元).
图1 图2
(1)若A、B两种产品的利润表示为投资的函数分别为、,求出它们的表达式并注明定义域;
(2)现企业有20万元资金全部投入A、B两种产品的生产,问:怎样分配这20万元资金,能使获得的利润最大,其最大利润是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品的三个质量指标分别为x, y, z, 用综合指标S =" x" + y + z评价该产品的等级. 若S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:
产品编号 | A1 | A2 | A3 | A4 | A5 |
质量指标(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
产品编号 | A6 | A7 | A8 | A9 | A10 |
质量指标(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率;
(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,
(1) 用产品编号列出所有可能的结果;
(2) 设事件B为 “在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的是函数(,)在区间上的图象,将该函数图象各点的横坐标缩小到原来的一半(纵坐标不变),再向右平移()个单位长度后,所得到的图象关于直线对称,则的最小值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数 有以下四个命题:
①对于任意的,都有; ②函数是偶函数;
③若为一个非零有理数,则对任意恒成立;
④在图象上存在三个点,,,使得为等边三角形.其中正确命题的序号是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com