精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令 ,若函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,求实数r的取值范围.

【答案】
(1)解:函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.

可得:1﹣3m+n=0,4﹣6m+n=0,解得m=1,n=2


(2)解:由(1)可得f(x)=x2﹣3x+2,

不等式f(x)﹣k>0在x∈[0,5]恒成立,

可得不等式f(x)>k在x∈[0,5]恒成立,

f(x)=x2﹣3x+2在x∈[0,5]上的最小值为:f( )=﹣

可得k<﹣


(3)解: =x+ ﹣3,函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,

即g(2x)﹣r2x=0在x∈[﹣1,1]上有解,

即r=1+2( 2﹣3 在x∈[﹣1,1]上有解,

令t= ,则r=2t2﹣3t+1,

∵x∈[﹣1,1],∴t∈[ ,2],

即r=2t2﹣3t+1在t∈[ ,2]上有解,

r=2k2﹣2t+1=2(t﹣ 2 ,( ≤t≤2),

∴﹣ ≤r≤3,

∴r的范围是[﹣ ,3]


【解析】(1)利用二次函数的零点,代入方程,化简求解即可.(2)求出函数f(x)的最小值,即可求解k的范围.(3)问题转化为r=1+2( )2﹣3 在x∈[﹣1,1]上有解,通过换元得到r=2t2﹣3t+1在t∈[ ,2]上有解,求出k的范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】东莞某家具生产厂家根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产书桌、书柜、电脑椅共120张,且书桌至少生产20张.已知生产这些家具每张所需工时和每张产值如表:

家具名称

书桌

书柜

电脑椅

产值(千元)

4

3

2

问每周应生产书桌、书柜、电脑椅各多少张,才能使产值最高?最高产值是多少?(以千元为单位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x3﹣3a2x+1的图像与直线y=3只有一个公共点,则实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定点M(3, )与抛物线y2=2x上的点P的距离为d1 , P到抛物线准线l的距离为d2 , 则d1+d2取最小值时,P点的坐标为(
A.(0,0)
B.(1,
C.(2,2)
D.( ,-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ +x(a>0).若曲线y=f(x)在点(1,f(1))处的切线与直线x﹣2y=0垂直, (Ⅰ)求实数a的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)= ,则函数f(x)与函数g(x)= 的图象在区间[﹣3,3]上的交点个数为(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的最小正周期和单调区间;
(2)设锐角△ABC的三个内角A、B、C的对应边分别是a,b,c,若 ,f( )=﹣ ,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点P(3,2)且在两坐标轴上的截距相等的直线方程是(
A.x﹣y﹣1=0
B.x+y﹣5=0或2x﹣3y=0
C.x+y﹣5=0
D.x﹣y﹣1=0或2x﹣3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6.
(Ⅰ)估计所抽取的数学成绩的众数;
(Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率.

查看答案和解析>>

同步练习册答案