【题目】已知函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令 ,若函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,求实数r的取值范围.
【答案】
(1)解:函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.
可得:1﹣3m+n=0,4﹣6m+n=0,解得m=1,n=2
(2)解:由(1)可得f(x)=x2﹣3x+2,
不等式f(x)﹣k>0在x∈[0,5]恒成立,
可得不等式f(x)>k在x∈[0,5]恒成立,
f(x)=x2﹣3x+2在x∈[0,5]上的最小值为:f( )=﹣ ,
可得k<﹣
(3)解: =x+ ﹣3,函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,
即g(2x)﹣r2x=0在x∈[﹣1,1]上有解,
即r=1+2( )2﹣3 在x∈[﹣1,1]上有解,
令t= ,则r=2t2﹣3t+1,
∵x∈[﹣1,1],∴t∈[ ,2],
即r=2t2﹣3t+1在t∈[ ,2]上有解,
r=2k2﹣2t+1=2(t﹣ )2﹣ ,( ≤t≤2),
∴﹣ ≤r≤3,
∴r的范围是[﹣ ,3]
【解析】(1)利用二次函数的零点,代入方程,化简求解即可.(2)求出函数f(x)的最小值,即可求解k的范围.(3)问题转化为r=1+2( )2﹣3 在x∈[﹣1,1]上有解,通过换元得到r=2t2﹣3t+1在t∈[ ,2]上有解,求出k的范围即可.
科目:高中数学 来源: 题型:
【题目】东莞某家具生产厂家根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产书桌、书柜、电脑椅共120张,且书桌至少生产20张.已知生产这些家具每张所需工时和每张产值如表:
家具名称 | 书桌 | 书柜 | 电脑椅 |
工 时 | |||
产值(千元) | 4 | 3 | 2 |
问每周应生产书桌、书柜、电脑椅各多少张,才能使产值最高?最高产值是多少?(以千元为单位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定点M(3, )与抛物线y2=2x上的点P的距离为d1 , P到抛物线准线l的距离为d2 , 则d1+d2取最小值时,P点的坐标为( )
A.(0,0)
B.(1, )
C.(2,2)
D.( ,- )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+ +x(a>0).若曲线y=f(x)在点(1,f(1))处的切线与直线x﹣2y=0垂直, (Ⅰ)求实数a的值;
(Ⅱ)求函数f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)= ,则函数f(x)与函数g(x)= 的图象在区间[﹣3,3]上的交点个数为( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)求函数f(x)的最小正周期和单调区间;
(2)设锐角△ABC的三个内角A、B、C的对应边分别是a,b,c,若 , ,f( )=﹣ ,求b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点P(3,2)且在两坐标轴上的截距相等的直线方程是( )
A.x﹣y﹣1=0
B.x+y﹣5=0或2x﹣3y=0
C.x+y﹣5=0
D.x﹣y﹣1=0或2x﹣3y=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6.
(Ⅰ)估计所抽取的数学成绩的众数;
(Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com