精英家教网 > 高中数学 > 题目详情
15.设集合A={-1,0,1,2,3},B={x|x2-2x>0},则A∩B={-1,3}.

分析 求出B中不等式的解集确定出B,找出A与B的交集即可.

解答 解:由B中不等式变形得:x(x-2)>0,
解得:x<0或x>2,即B={x|x<0或x>2},
∵A={-1,0,1,2,3},
∴A∩B={-1,3},
故答案为:{-1,3}

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若集合A={x∈N|$\frac{x-2}{x}$≤0},B={x∈Z|$\sqrt{x}$≤2},则满足条件A⊆C?B的集合C的个数为(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,O为坐标原点,已知向量$\overrightarrow{a}$=(2,1),A(1,0),B(cos θ,t).
(1)若向量$\overrightarrow{a}$⊥$\overrightarrow{AB}$,且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|,求向量$\overrightarrow{OB}$的坐标;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{AB}$,求y=cos 2θ-cos θ+t2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.含有三个实数的集合既可表示成{a,$\frac{b}{a}$,1},又可表示成{a2,a+b,0},则a2014+b2015=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图直三棱柱ABC-A′B′C′的侧棱长为3,AB⊥BC,且AB=BC=3,点E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:无论E在何处,总有CB′⊥C′E;
(2)当三棱锥B-EB′F的体积取得最大值时,求AE的长度.
(3)在(2)的条件下,求异面直线A′F与AC所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a,b,c分别是△ABC三个内角A,B,C的对边,$b=\sqrt{7}$,$c=\sqrt{3}$,$B=\frac{π}{6}$,那么a等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.计算$\frac{\sqrt{x}•\root{3}{{x}^{4}}}{x•\root{6}{x}}$的值为(  )
A.${x}^{\frac{2}{3}}$B.${x}^{-\frac{2}{3}}$C.${x}^{\frac{1}{3}}$D.${x}^{-\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l:(a2-a+1)x-(a2+a+1)y-a2+3a-1=0,a∈R
(1)求证:直线l恒过定点,并求出定点坐标;
(2)求当a=1和a=-1时对应的两条直线的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{{\begin{array}{l}{(1-3a)x+10a,x≤7}\\{{a^{x-7}},x>7}\end{array}}$是定义域(-∞,+∞)上的单调递减函数,则实数a的取值范围是(  )
A.$(\frac{1}{3},\frac{1}{2})$B.($\frac{1}{3}$,$\frac{6}{11}$]C.$[\frac{1}{2},\frac{2}{3})$D.$(\frac{1}{2},\frac{6}{11}]$

查看答案和解析>>

同步练习册答案