精英家教网 > 高中数学 > 题目详情
16.已知O为坐标原点,实数x,y满足$\left\{\begin{array}{l}{x-y+1≤0}\\{3x+4y≤12}\\{x-1≥0}\end{array}\right.$,P(x,y)为该不等式组所表示的平面区域内任意一点,使z=x+2y取最大值的点为A点,则|OP|•|AO|•cos∠AOP的最大值等于(  )
A.$\frac{97}{16}$B.$\frac{11}{2}$C.$\frac{167}{28}$D.$\frac{38}{7}$

分析 通过约束条件可知A(1,$\frac{9}{4}$)使z=x+2y取最大值,进而利用向量数量积的定义可得结论.

解答 解:依题意,约束条件为△ABC,其中三个顶点坐标为(1,$\frac{9}{4}$)、(1,2)、($\frac{8}{7}$,$\frac{15}{7}$),
∵使z=x+2y取最大值的点为A点,
∴A(1,$\frac{9}{4}$),不妨记B(1,2)、C($\frac{8}{7}$,$\frac{15}{7}$),
∵|OP|•|AO|•cos∠AOP=|OP|•|OA|•cos∠AOP=$\overrightarrow{OP}$•$\overrightarrow{OA}$,
∴当P与点A重合时$\overrightarrow{OP}$•$\overrightarrow{OA}$最大,
最大值为$\sqrt{(1-0)^{2}+(\frac{9}{4}-0)^{2}}$=$\frac{97}{16}$,
故选:A.

点评 本题考查简单线性规划,考查平面向量数量积,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数y=x2-x-1的顶点坐标是 (  )
A.(-$\frac{1}{2}$,$\frac{5}{4}$)B.($\frac{1}{2}$,-$\frac{5}{4}$)C.(-$\frac{1}{2}$,-$\frac{5}{4}$)D.($\frac{1}{2}$,$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有下列说法:①曲线的切线与曲线有且只有一个公共点:
②曲线上任意一点都可以用割线逼近切线的方法作出过此点的切线:
③曲线在点P附近经过放大后可以近似的看成直线,则曲线在点P处一定存在切线;
④以曲线上某点为切点的曲线的切线可以作出两条.
其中,正确的是③(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:$\frac{1+2sinθcosθ}{co{s}^{2}θ-si{n}^{2}θ}$=$\frac{1+tanθ}{1-tanθ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知指数函数y=ax(a>0,且a≠1)的图象经过点(1,3).
(1)求函数的解析式;
(2)求当x=-1,0,2时的函数值;
(3)画出函数的图象;
(4)叙述函数的性质.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某几何体的三视图如图所示,则该几何体的体积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的首项a1=1,?n∈N*,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{n}$}的前n项和Sn
(3)求证:?n∈N*,a12+a22+a32+…+an2<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知两个大小相等的共点力F1,F2,当他们的夹角为90°时,合力的大小为10N,则当他们的夹角是120°时,合力大小是$5\sqrt{2}$N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=ln(1+x)-ln(1-x).
(1)求函数的定义域;
(2)判断函数的奇偶性,并说明理由.

查看答案和解析>>

同步练习册答案