【题目】已知函数。
(I)当时,证明:当时,;
(II)若当时,恒成立,求a的取值范围。
【答案】(1)见解析(2)
【解析】
(1)首先确定函数的单调性,然后结合函数的最小值证明题中的结论即可;
(2)首先求得函数的导函数, 然后对其二次求导,分类讨论和两种情况求解a的取值范围即可.
(1),当a=0时,,
当x≥0时,,所以y=f(x)在x≥0时单调递增,
又因为f(0)=0,f(x)≥f(0)=0.
(2),记,
①当时,x≥0时,,
∴ y=g(x)在x≥0时单调递增,
g(x)≥g(0)=0,即f'(x)≥f'(0),所以y=f(x)在x≥0时单调递增,f(x)≥f(0)=0.
②当时,令,得,
当时,,
∴在单调递减,
∴ g(x)≤g(0)=0,即f'(x)≤f'(0)=0,在单调递减,
∴ f(x)<f(0)=0,与题设矛盾.
综上所述,.
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,沿AB将△ADC翻折成.设二面角的平面角为,直线与直线BC所成角为,直线与平面ABC所成角为,当为锐角时,有
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将所有平面向量组成的集合记作, 是从到的映射, 记作或, 其中都是实数. 定义映射的模为: 在的条件下的最大值, 记做. 若存在非零向量, 及实数使得, 则称为的一个特征值.
(Ⅰ)若, 求;
(Ⅱ)如果, 计算的特征值, 并求相应的;
(Ⅲ)试找出一个映射, 满足以下两个条件: ①有唯一的特征值, ②. (不需证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1). w.w.w..c.o.m
(Ⅰ)求证:对任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)判断函数的零点的个数并说明理由;
(2)求函数零点所在的一个区间,使这个区间的长度不超过;
(3)若,对于任意的,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:关于直线:对称的圆为.
(Ⅰ)求圆的方程;
(Ⅱ)过点作直线与圆交于,两点,是坐标原点,是否存在这样的直线,使得在平行四边形(和为对角线)中?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上顶点为,且过点.
(1)求椭圆的方程及其离心率;
(2)斜率为的直线与椭圆交于两个不同的点,当直线的斜率之积是不为0的定值时,求此时的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com