精英家教网 > 高中数学 > 题目详情
12.已知复数z满足(1-i)z=2i,其中i为虚数单位,则z的模为$\sqrt{2}$.

分析 由(1-i)z=2i,得$z=\frac{2i}{1-i}$,然后利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.

解答 解:由(1-i)z=2i,
得$z=\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}=-1+i$,
则z的模为:$\sqrt{(-1)^{2}+1}=\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在△ABC中,有正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=定值,这个定值就是△ABC的外接圆的直径.如图2所示,△DEF中,已知DE=DF,点M在直线EF上从左到右运动(点M不与E、F重合),对于M的每一个位置,记△DEM的外接圆面积与△DMF的外接圆面积的比值为λ,那么(  )
A.λ先变小再变大
B.仅当M为线段EF的中点时,λ取得最大值
C.λ先变大再变小
D.λ是一个定值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn,且${S_n}={n^2}+n$,则a3=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,点D 在线段AB 上,∠CAD=30°,∠CDB=50°.给出下列三组条件(给出线段的长度):
①AD,DB
②AC,DB
③CD,DB
其中,能使△ABC 唯一确定的条件的序号为①②③.(写出所有所和要求的条件的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{lnx+1}{x}$.
(Ⅰ)求曲线y=f(x) 在函数f(x) 零点处的切线方程;
(Ⅱ)求函数y=f(x) 的单调区间;
(Ⅲ)若关于x 的方程f(x)=a 恰有两个不同的实根x1,x2,且x1<x2,求证:${x_2}-{x_1}>\frac{1}{a}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为$\sqrt{5}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=\left\{{\begin{array}{l}{sinx,x<1}\\{{x^3}-9{x^2}+25x+a,x≥1}\end{array}}\right.$,若函数f(x)的图象与直线y=x有三个不同的公共点,则实数a的取值集合为{-20,-16}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.椭圆$\frac{x^2}{12}+\frac{y^2}{4}=1$的左、右焦点分别为F1,F2,过焦点F1的直线交该椭圆于A,B两点,若△ABF2的内切圆面积为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|的值为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C1:x2+y2-2ax+4y+a2-5=0和圆C2:x2+y2-2x-2y+1=0
(1)当两圆外离时,求实数a的取值范围
(2)已知P是直线3x+4y+8=0上的动点,PA,PB是圆C2的切线,A,B是切点,求四边形PAC2B面积的最小值.

查看答案和解析>>

同步练习册答案