精英家教网 > 高中数学 > 题目详情

【题目】已知A、B、C为锐角三角形ABC的三个内角,若向量=(2-2sinA,cosA+sinA)与向量=(1+sinA,cosA-sinA)互相垂直.

(Ⅰ)求角A;

(Ⅱ)求函数y=2sin2B+cos的最大值.

【答案】(Ⅰ);(Ⅱ)2 .

【解析】

(Ⅰ)由两向量的坐标,以及两向量共线,利用平面向量的坐标运算法则列出关系式,整理求出sinA的值,即可确定出角A的大小;(Ⅱ)由A的度数求出B+C的度数,用B表示出C,代入原式化简,整理为一个角的正弦函数,根据这个角的范围,利用正弦函数的值域,即可确定出所求式子的值域.

(1)∵=(sinA-cosA,1+sinA),

共线,

可得(2-2sinA)(1+sinA)-(sinA-cosA)(cosA+sinA)=0,

化简可得sinA=±

又△ABC是锐角三角形,∴sinA=

(II)由A=得B+C=,即C=-B,

y=2sin2B+cos=1-cos2B+cossin2B

=1+sin2Bcos

,∴,∴<2B<π,∴

.故

因此函数y=2sin2B+cos的值域为(,2],故函数y的最大值等于2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在(0,+∞)上单调递减的为(  )

A. y=ln(3﹣x2 B. y=cosx C. y=x2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:

总计

读营养说明

16

28

44

不读营养说明

20

8

28

总计

36

36

72

(1)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为性别和是否看营养说明有关系呢?

(2)从被询问的28名不读营养说明的大学生中,随机抽取2名学生,求抽到女生人数

的分布列及数学期望.

附:

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x>0时,.

1)求f(x)的解析式;

2)设x[1,2]时,函数,是否存在实数m使得g(x)的最小值为6,若存在,求m的取值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两城相距,在两地之间距地建一核电站给两城供电.为保证城市安全,核电站距城市距离不得少于.已知供电费用(元)与供电距离()的平方和供电量(亿度)之积成正比,比例系数,若城供电量为亿度/月,城为亿度/.

)把月供电总费用表示成的函数,并求定义域;

)核电站建在距城多远,才能使供电费用最小,最小费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人群中各种血型的人所占的比例见下表:

血腥

A

B

AB

O

该血型的人所占的比例/%

28

29

8

35

已知同种血型的人可以互相输血,O型血可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.该人群中的小明是B型血,若他因病需要输血,问:

1)任找一个人,其血可以输给小明的概率是多少?

2)任找一个人,其血不能输给小明的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在过去几年内使用某种型号的灯管1 000根,该公司对这些灯管的使用寿命(单位:h)进行了统计,统计结果如表所示:

分组

频数

48

121

208

223

频率

分组

频数

193

165

42

频率

1)将各组的频率填入表中;

2)根据上述统计结果,估计该种型号灯管的使用寿命不足1500 h的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共13分)

如图,正方形ABCD和四边形ACEF所在的平面互相垂直。

EF//ACAB=,CE=EF=1

)求证:AF//平面BDE

)求证:CF⊥平面BDF;

查看答案和解析>>

同步练习册答案