精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<数学公式)的图象与x轴的交点中,相邻两个交点之间的距离为数学公式,且图象上一个最低点为M(数学公式,-2).
(1)求f(x)的解析式;  
(2)用“五点法”画出函数f(x)的简图;
(3)求f(x)的单调增区间; 
(4)求f(x)的对称轴方程、对称点坐标.

解:(1)由题意可知,T=,A=2,ω=
,∴φ=+2kπ,k∈Z,∵
∴φ=
所以函数:f(x)=2sin(2x+).
(2)f(x)=2sin(2x+).
列表


(3)因为ysinx的单调增区间为:[-]k∈Z
所以f(x)=2sin(2x+) 可得
-≤2x+
解得 x∈[]k∈Z
f(x)的单调增区间:[]k∈Z
(5)函数f(x)=2sin(2x+).因为2x+=kπ+,k∈Z所以函数的对称轴方程为:x=,k∈Z
因为2x+=kπ,k∈Z所以函数的对称中心坐标为:(),k∈Z.
分析:(1)直接求出函数的周期T,A以及ω,通过函数经过的特殊点求出φ,得到函数的解析式;
(2)根据函数的解析式,通过列表,描点,连线画出函数的图象.
(3)利用正弦函数的单调增区间,求出f(x)的单调增区间;
(4)根据正弦函数的对称轴方程,求出函数的对称轴方程,利用正弦函数的对称中心求出函数的对称中心坐标即可.
点评:本题是中档题,考查三角函数的解析式的求法,五点法作图,函数的单调性的应用,函数图象的平移伸缩变换,函数的最值,可以说一题概括三角函数的基本知识的灵活应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案