【题目】如图,平面平面,四边形和都是边长为2的正方形,点,分别是,的中点,二面角的大小为60°.
(1)求证:平面;
(2)求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系内,有一动点到直线的距离和到点的距离比值是
(1)求动点的轨迹的方程;
(2)已知点(异于点)为曲线上一个动点,过点作直线的垂线交曲线于点,,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为且经过点分别是的右顶点和上顶点,过原点的直线与交于两点(点在第一象限),且与线段交于点.
(1)求椭圆的标准方程;
(2)若,求直线的方程;
(3)若的面积是的面积的倍,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列、、,对于给定的正整数,记,.若对任意的正整数满足:,且是等差数列,则称数列为“”数列.
(1)若数列的前项和为,证明:为数列;
(2)若数列为数列,且,求数列的通项公式;
(3)若数列为数列,证明:是等差数列 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为,以直角坐标系的点为极点,为极轴,且取相同的长度单位,建立极坐标系,已知圆的极坐标方程为.
(1)求直线的倾斜角;
(2)若直线与圆交于两点,当的面积最大时,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.
(1)求动圆圆心的轨迹的方程;
(2)已知与为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且椭圆的离心率为,过作轴的垂线与椭圆交于两点,且,动点在椭圆上.
(1)求椭圆的标准方程;
(2)记椭圆的左、右顶点分别为,且直线的斜率分别与直线(为坐标原点)的斜率相同,动点不与重合,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com