精英家教网 > 高中数学 > 题目详情
13.设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足|2x+7|<5,且?p是?q的必要不充分条件,则实数a的取值范围为[-2,-1].

分析 对于命题p:实数x满足x2-4ax+3a2<0,其中a<0,化为(x-a)(x-3a)<0,可得解集.对于命题q:实数x满足|2x+7|<5,利用绝对值不等式的性质即可得出.
由于?p是?q的必要不充分条件,可得p是q的充分不必要条件,即可得出.

解答 解:对于命题p:实数x满足x2-4ax+3a2<0,其中a<0,化为(x-a)(x-3a)<0,解得3a<x<a.
对于命题q:实数x满足|2x+7|<5,解得-6<x<-1.
∵?p是?q的必要不充分条件,∴p是q的充分不必要条件,
∴$\left\{\begin{array}{l}{3a≥-6}\\{a≤-1}\end{array}\right.$,且等号不能同时成立,
解得-2≤a≤-1.
则实数a的取值范围为[-2,-1].
故答案为:[-2,-1].

点评 本题考查了简易逻辑的判定方法、一元二次不等式的解法、绝对值不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.幂函数f(x)的图象过点(2,4)且f(m)=16,则实数m的所有可能的值为(  )
A.4B.±2C.±4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方体ABCD-A1B1C1D1中,直线BD1与CC1所成角的正切值为(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设函数H1(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,H2(x)=$\left\{\begin{array}{l}{g(x),f(x)≥g(x)}\\{f(x),f(x)<g(x)}\end{array}\right.$,记H1(x)的最小值为A,H2(x)的最大值为B,则A-B(  )
A.16B.-16C.a2+2a-16D.a2-2a-16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.命题“若sinx=siny,则x=y”的逆否命题为真命题
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“?x∈R,x2+x+1<0”的否定是“?x∈R,x2+x+1<0”
D.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数$z=\frac{5+3i}{1-i}$,则下列说法正确的是(  )
A.z的虚部为4iB.z的共轭复数为1-4i
C.|z|=5D.z在复平面内对应的点在第二象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(-1,1]时,f(x)=1-x2,函数g(x)=Asinωx分别在两相邻对称轴x=1与x=-1处取得最大值1与最小值-1,则函数h(x)=f(x)-g(x)在区间[0,6]内零点的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点($\sqrt{3}$,-1)且与圆x2+y2=4相切的直线方程是(  )
A.$\sqrt{3}$x+y-4=0B.x-$\sqrt{3}$y-4=0C.x-$\sqrt{3}$y-2=0D.$\sqrt{3}$x-y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.1+2i+3i2+…+2005i2004的值是(  )
A.-1000-1000iB.-1002-1002iC.1003-1002iD.1005-1000i

查看答案和解析>>

同步练习册答案