精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,解不等式

2)若不等式的解集包含,求实数的取值范围.

【答案】1;(2.

【解析】

(1)通过对的范围讨论,得到 的表达式,得出相应的不等式组的解集,再取并集可得所求的解集;

2)通过对的范围讨论,得到 的表达式,根据题意列出关于的不等式组,再对各不等式组的解集求并集,可求出的范围.

(1)时,
时,由≥4,解得
时,≥4无解;
≥1时,由≥4解得
≥4的解集为
(2)时,,要使不等式的解集包含,则

时,,要使不等式的解集包含

此时则需满足,此时满足题意;

时,由上恒成立,且

,解得,此时满足题意;

时,,由上恒成立,

此时则需满足,此时无解;

故满足条件的的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,且,平面平面,点为线段的中点,点是线段上的一个动点.

(Ⅰ)求证:平面平面

(Ⅱ)当点是线段上的中点时,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省在2017年启动了“3+3”高考模式.所谓“3+3”高考模式,就是语文、数学、外语(简称语、数、外)为高考必考科目,从物理、化学、生物、政治、历史、地理(简称理、化、生、政、史、地)六门学科中任选三门作为选考科目.该省某中学2017级高一新生共有990人,学籍号的末四位数从00010990.

1)现从高一学生中抽样调查110名学生的选考情况,问:采用什么样的抽样方法较为恰当?(只写出结论,不需要说明理由)

2)据某教育机构统计,学生所选三门学科在将来报考专业时受限制的百分比是不同的.该机构统计了受限百分比较小的十二种选择的百分比值,制作出如下条形图.

设以上条形图中受限百分比的均值为,标准差为.如果一个学生所选三门学科专业受限百分比在区间内,我们称该选择为恰当选择”.该校李明同学选择了化学,然后从余下五门选考科目中任选两门.问李明的选择为恰当选择"的概率是多少?(均值,标准差均精确到0.1

(参考公式和数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为2的正方形上有一点,记的最大值为,最小值为,则

A.8B.6C.4D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按照干支顺序相配,构成了“干支纪年法”,其相配顺序为:甲子、乙丑、丙寅癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60为一个周期,周而复始,循环记录.按照“干支纪年法”,中华人民共和国成立的那年为己丑年,则2013年为(

A.甲巳年B.壬辰年C.癸巳年D.辛卯年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,是曲线段是参数,)的左、右端点,上异于的动点,过点作直线的垂线,垂足为.

1)建立适当的极坐标系,写出点轨迹的极坐标方程;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )

①公共图书馆业机构数与年份的正相关性较强

②公共图书馆业机构数平均每年增加13.743个

③可预测 2019 年公共图书馆业机构数约为3192个

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的极值;

(2)若对任意的,当时,恒成立,求实数的最大值;

(3)若函数恰有两个不相等的零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案