(本小题满分12分)
已知如图四棱锥P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.
(I)求异面直线PA与CD所成的角的大小;
(II)求证:BE⊥平面PCD;
(III)求二面角A—PD—B的大小.
解:解法一:如图,以B为原点,分别以BC、BA、BP为x,y、z轴,建立空间直角坐标系,则
(1)
…4分
.
(2)
.
9分
(3)设平面PAD的一个法向量为.
令
,设平面PBD的法向量为
令
又二面角A—PD—B为锐二面角,故二面角A—PD—B的大小为.
解法二:(1)取BC中点F,连结AF,则CF=AD,且CF∥AD,
∴四边形ADCF是平行四边形,∴AF∥CD.
∴∠PAF(或其补角)为异面直线PA与CD所成的角.
∵PB⊥平面ABCD, ∴PB⊥BA,PB⊥BF.
∵PB=AB=BF=1, ∴PA=PF=AF=.
即异面直线PA与CD所成的角等于. 4分
(2)
,
则.
.
由(1)知,..
(3)设AF与BD的交点为O,则.
过点O作于点H,连结AH,则.
的平面角。
在.
在.
在.
.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com