【题目】某班级50名学生的考试分数x分布在区间[50,100)内,设分数x的分布频率是f(x)且f(x)= ,考试成绩采用“5分制”,规定:考试分数在[50,60)内的成绩记为1分,考试分数在[60,70)内的成绩记为2分,考试分数在[70,80)内的成绩记为3分,考试分数在[80,90)内的成绩记为4分,考试分数在[90,100)内的成绩记为5分.用分层抽样的方法,现在从成绩在1分,2分及3分的人中用分层抽样随机抽出6人,再从这6人中抽出3人,记这3人的成绩之和为ξ(将频率视为概率).
(1)求b的值,并估计班级的考试平均分数;
(2)求P(ξ=7);
(3)求ξ的分布列和数学期望.
【答案】
(1)解:依题意频率分布表如下:
分数 | [50,60) | [60.70) | [70.80) | [80,90) | [90,100) |
成绩 | 1 | 2 | 3 | 4 | 5 |
频率 | 0.1 | 0.2 | 0.3 | b﹣1.6 | b﹣1.8 |
∵f(5)+f(6)+f(7)+f(8)+f(9)=1,∴b=1.9
班级的平均成绩 =55×0.1+65×0.2+75×0.3+85×0.3+95×0.1=76(分)
(2)解:从成绩在1分,2分及3分的人中用分层抽样随机抽出6人,则成绩为1分、2分、3分的分别为1人、2人、3人,
再从这6人中抽出3人,记这3人的成绩之和为ξ,P(ξ=7)=
(3)解:ξ的可能取值为5,6,7,8,9
P(ξ=5)= ,P(ξ=6)= ,P(ξ=7)= ,P(ξ=8)= ,P(ξ=9)=
ξ的分布列如下:
ξ | 5 | 6 | 7 | 8 | 9 |
P |
|
|
|
|
|
∴E(ξ)=5× +(6+7+8)× +9× =7
【解析】(1)求出各个分数段的频率,列出频率分布表,根据频率之和为1,求得b,再求平均值.(2)从成绩在1分,2分及3分的人中用分层抽样随机抽出6人,则成绩为1分、2分、3分的分别为1人、2人、3人,再从这6人中抽出3人,成绩之和为7的情况有,1+3+3,2+2+3(3)ξ的可能取值为5,6,7,8,9,求出相应概率,再求解.
【考点精析】利用离散型随机变量及其分布列对题目进行判断即可得到答案,需要熟知在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】双曲线 =1(a>1,b>0)的焦点距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和 .求双曲线的离心率e的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 满足an= +2n﹣2,n∈N* , 且S2=6.
(1)求数列{an}的通项公式;
(2)证明: + + +…+ < .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计数据表:
购买食品的年支出费用x(万元) | 2.09 | 2.15 | 2.50 | 2.84 | 2.92 |
购买水果和牛奶的年支出费用y(万元) | 1.25 | 1.30 | 1.50 | 1.70 | 1.75 |
根据上表可得回归直线方程 ,其中 ,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为( )
A.1.79万元
B.2.55万元
C.1.91万元
D.1.94万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数为定义域上的单调函数,且存在区间(其中,使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做函数的等域区间.
(1)已知是上的正函数,求的等域区间;
(2)试探求是否存在,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 ,函数 .
(1)当 时,解不等式 ;
(2)若关于 的方程 的解集中恰好有一个元素,求 的取值范围;
(3)设 ,若对任意 ,函数 在区间 上的最大值与最小值的差不超过1,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是数列的前n项和,,且.
(1)求数列的通项公式;
(2)对于正整数,已知成等差数列,求正整数的值;
(3)设数列前n项和是,且满足:对任意的正整数n,都有等式成立.求满足等式的所有正整数n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的顶点坐标为,,, 点P的横坐标为14,且,点是边上一点,且.
(1)求实数的值及点、的坐标;
(2)若为线段(含端点)上的一个动点,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 () | ||||||
就诊人数(个) |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(1)求选取的组数据恰好是相邻两月的概率;
(2)若选取的是1月与月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
参考数据,
(参考公式: ,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com