精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,a2n=a2n-1+(-1)n,a2n+1=a2n+3n(n∈N*),则数列{an}的前10项的和为
 
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:把a2n=a2n-1+(-1)n代入a2n+1=a2n+3n,得到a2n+1=a2n+3n=a2n-1+(-1)n+3n,依次取n为n-1,
n-2,…,1,类加后求得a2n-1,进一步得到a2n,则分组可求数列{an}的前10项的和.
解答: 解:由a1=1,a2n=a2n-1+(-1)n,a2n+1=a2n+3n(n∈N*),得
a2n+1=a2n+3n=a2n-1+(-1)n+3n
a2n-1=a2n-3+(-1)n-1+3n-1
a2n-3=a2n-5+(-1)n-2+3n-2

a5=a3+(-1)2+32
a3=a1+(-1)1+31
累加得:a2n-1+a2n-3+…+a5+a3=a2n-3+a2n-5+…+a3+a1
+(-1)1+(-1)2+…+(-1)n-2+(-1)n-1+31+32+…+3n-2+3n-1
a2n-1=a1+
-1[1-(-1)n-1]
2
+
3(1-3n-1)
1-3

=1-
1
2
+
1
2
•(-1)n-1+
3
2
3n-1-
3
2
=
1
2
•(-1)n-1+
3
2
3n-1-1

a2n=a2n-1+(-1)n=
3
2
3n-1-
1
2
•(-1)n-1-1

则S10=(a1+a3+a5+a7+a9)+(a2+a4+a6+a8+a10
=
1
2
[(-1)0+31-1+(-1)1+32-1+…+(-1)4+35-1]

+
1
2
[31-(-1)0-1+32-(-1)1-1+…+35-(-1)4-1]

=3+32+33+34+35-5
=
3(1-35)
1-3
-5

=358.
故答案为:358.
点评:本题考查了数列递推式,考查了累加法求数列的通项公式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明:钝角三角形的内角中有且只有一个钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:tanα+tanβ=tan(α+β)-tanαtanβtan(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1-
1
2x
,x>0
(a-1)x+1,x≤0

(1)证明:函数f(x)在(0,+∞)上单调递增;
(2)求函数f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(5,9),y∈(7,10),则x-y∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)(1)求证:当a>2时,
a+2
+
a-2
<2
a

(2)已知x∈R,a=x2+
1
2
,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2x-
3
cos2x+n-1(n∈N*).
(1)在锐角△ABC中,a,b,c分别是角A,B,C的对边,当n=1时,f(A)=
3
,且c=3,△ABC的面积为3
3
,求b的值.
(2)若f(x)的最大值为an(an为数列{an}的通项公式),又数列{bn}满足bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C,过点(1,
2
2
),
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设T(2,0),过点F2作直线l与椭圆C交于A,B两点,且
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,BC=
2
,且PC⊥CD,BC⊥PA,E是PB的中点.
(Ⅰ)求证:平面PBC⊥平面EAC;
(Ⅱ)若平面PAC与平面EAC的夹角的余弦值为
3
3
,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

同步练习册答案