精英家教网 > 高中数学 > 题目详情
4.已知圆心为(3,4)的圆N被直线x=1截得的弦长为2$\sqrt{5}$.
(1)求圆N的方程;
(2)若过点D(3,6)的直线l被圆N截得的弦长为4$\sqrt{2}$,求直线l的斜率.

分析 (1)求出圆的半径,即可求圆N的方程;
(2)根据题意得到直线l斜率存在,设为k,表示出直线l方程,利用点到直线的距离公式表示出圆心到直线l的距离d,根据r与弦长,利用垂径定理及勾股定理列出关于k的方程,求出方程的解得到k的值即可.

解答 解:(1)由题意,圆心到直线的距离为3-1=2,
∵圆N被直线x=1截得的弦长为2$\sqrt{5}$,
∴圆的半径r=$\sqrt{5+4}$=3,
∴圆N的方程为(x-3)2+(y-4)2=9;
(2)设直线l方程为y-6=k(x-3),即kx-y-3k+6=0,
∵圆心(3,4)到直线l的距离d=$\frac{2}{\sqrt{1+{k}^{2}}}$,r=3,弦长为4$\sqrt{2}$,
∴4$\sqrt{2}$=2$\sqrt{9-{d}^{2}}$,化简得1+k2=4,解得:k=±$\sqrt{3}$.

点评 此题考查了直线与圆相交的性质,涉及的知识有:点到直线的距离公式,圆的标准方程,垂径定理,以及勾股定理,熟练掌握公式及定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.一个几何体的三视图如图所示,正视图和侧视图都是等边三角形,且该几何体的四个点在空间直角坐标系O-xyz中的坐标分别是(0,0,0),(2,0,0),(0,2,0),则第五个顶点的坐标可能为(  )
A.(1,1,1)B.(1,1,$\sqrt{2}$)C.(1,1,$\sqrt{3}$)D.(2,2,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若实数m取值是区间[0,6]上的任意数,则关于x的方程x2-mx+4=0有实数根的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.甲、乙两组各有三名同学,她们在一次测试中的成绩的茎叶图如图所示,如果分别从甲、乙两组中随机选取一名同学,则这两名同学的成绩之差的绝对值不超过3的概率是$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x∈(1,+∞),2x-1-1>0,则下列叙述正确的是(  )
A.¬p为:?x∈(1,+∞),2x-1-1≤0B.¬p为:?x∈(1,+∞),2x-1-1<0
C.¬p为:?x∈(-∞,1],2x-1-1>0D.¬p是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知m、l是两条不同的直线,α、β是两个不同的平面,且m⊥α,l∥β,则下列说法正确的是(  )
A.若m∥l,则α∥βB.若α⊥β,则m∥lC.若m⊥l,则α∥βD.若α∥β,则m⊥l

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在极坐标系中,已知圆C的方程是ρ=4,直线l的方程是$ρsin(θ+\frac{π}{4})=\sqrt{2}$.
(1)将直线l与圆C的极坐标方程化为直角坐标方程
(2)求直线l与圆C相交所得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线$\frac{x^2}{m}-\frac{y^2}{6}=1$的一条渐近线方程为y=x,则实数m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.请写出“好货不便宜”的等价命题:便宜没好货.

查看答案和解析>>

同步练习册答案