精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若对任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,则实数m的取值范围是(
A.
B.
C.
D.

【答案】D
【解析】解:当x∈[0, ]时,2x+ ∈[ ],sin(2x+ )∈[ ,1], f(x)=2sin(2x+ )∈[1,2],
同理可得2x﹣ ∈[﹣ ],cos(2x﹣ )∈[ ,1],
g(x)=mcos(2x﹣ )﹣2m+3∈[﹣ +3,﹣m+3],
对任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,
,求得1≤m≤
故选:D.
由题意可得,当x∈[0, ]时,g(x)的值域是f(x)的值域的子集,由此列出不等式组,求得m的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若不等式上恒成立,求实数a的取值范围;

(Ⅲ)若,求证不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双十一网购狂欢,快递业务量猛增.甲、乙两位快递员日到日每天送件数量的茎叶图如图所示.

)根据茎叶图判断哪个快递员的平均送件数量较多(写出结论即可);

)求甲送件数量的平均数;

)从乙送件数量中随机抽取个,求至少有一个送件数量超过甲的平均送件数量的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)的图象关于点(﹣ ,0)成中心对称,且对任意的实数x都有 ,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)+…+f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在其定义区间[a,b]上满足①f(x)>0;②f′(x)<0;③对任意的x1 , x2∈[a,b],式子 恒成立.记S1= f(x)dx,S2= (b﹣a),S3=f(b)(b﹣a),则S1 , S2 , S3的大小关系为 . (按由小到大的顺序)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲乙丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比乙车更省油.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)是定义在上的奇函数.

(1)求的值;

(2)求函数的值域;

(3)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当t∈[﹣2,0]时,求函数g(t)的解析式;
(3)设函数h(x)=2|xk|,H(x)=x|x﹣k|+2k﹣8,其中实数k为参数,且满足关于t的不等式 有解,若对任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆)的左、右焦点分别为,点在椭圆上, 的面积为.

(Ⅰ)求该椭圆的标准方程;

(Ⅱ)是否存在圆心在轴上的圆,使圆在轴的上方与椭圆

有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案