精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形中,为边的中点,以为折痕把折起,使点到达点的位置,且使平面平面.

1)证明:平面

2)求二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)由,可得,利用平面平面,可得平面,则,由折叠知,进而得证;

(2)以的中点为坐标原点,以的方向为轴正方向,过点分别做的平行线,分别为轴和轴,建立如图所示空间直角坐标系,分别求得平面的法向量和平面的法向量,进而利用数量积求解即可

1)证明:由题意,又,所以,

又平面平面,且平面平面,所以平面,

,又,且,所以平面

2)以的中点为坐标原点,以的方向为轴正方向,过点分别做的平行线,分别为轴和轴,建立如图所示空间直角坐标系,

,,,,

为平面的法向量,则有

,即,可取,

为平面的法向量,则有

,即,可取,

所以,

则二面角余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角ABC所对的边分别为abc,其中A为锐角,且asinB+C)是bcosCccosB的等差中项.

1)求角A的大小;

2)若点D在△ABC的内部,且满足∠CAD=∠ABD,∠CBDAD1,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数yfx)的定义域为D,若对任意的x1D,总存在x2D,使得fx1fx2)=1,则称函数fx)具有性质M.下列结论:①函数yx3x具有性质M;②函数y3x+5x具有性质M;③若函数ylog8x+2),x[0t]时具有性质M,则t510;④若y具有性质M,则a5.其中正确结论的序号是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)如果方程有两个不相等的解,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域是上的连续函数图像的两个端点为是图像上任意一点,过点作垂直于轴的直线交线段于点(点与点可以重合),我们称的最大值为该函数的曲径,下列定义域是上的函数中,曲径最小的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数.

(1)讨论函数的单调区间;

(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

1)求证:平面平面

2)若二面角的正切值为,求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据茎叶如图所示.

)根据样本数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对稳定;

)若从乙车间件样品中随机抽取两件,求所抽取两件样品重量之差不超过克的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,取得极值,求的值并判断是极大值点还是极小值点;

当函数有两个极值点,且时,总有成立,求的取值范围.

查看答案和解析>>

同步练习册答案