精英家教网 > 高中数学 > 题目详情
11.设f(x)是定义在R上的导函数恒大于零的函数,且满足$\frac{f(x)}{f'(x)}$+x<1,则y=f(x)的零点个数为(  )
A.1B.0C.2D.0或2

分析 由题意可得[(x-1)f(x)]′<0,从而可判断当x≠1时,f(x)≠0,再检验f(1)即可.

解答 解:∵$\frac{f(x)}{f'(x)}$+x<1,
∴f(x)+f′(x)x<f′(x),
∴f(x)+f′(x)(x-1)<0,
∴[(x-1)f(x)]′<0,
∴函数y=(x-1)f(x)在R上单调递减,
又∵(1-1)f(1)=0,
∴当x≠1时,(x-1)f(x)≠0,
∴当x≠1时,f(x)≠0,
当x=1时,$\frac{f(1)}{f′(1)}$+1<1,
∴f(1)<0;
故y=f(x)的零点个数为0;
故选:B.

点评 本题考查了导数的综合应用,关键在于构造函数(x-1)f(x).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若a=i+i2+…+i2013(i是虚数单位),则$\frac{a(1+a)^{2}}{1-a}$的值为(  )
A.iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.正六棱锥的底面周长为6,高为$\sqrt{3}$,那么它的侧棱长是2,斜高是$\frac{\sqrt{15}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的个数有(  )个.
(1)若α,β垂直于同一平面,则α与β平行;
(2)“如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β”的逆否命题为真命题;
(3)“若m>2,则方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}$=1表示双曲线”的否命题为真命题;
(4)“a=1”是“直线l1:ax+2y=0与直线l2:x+(a+1)y+4=0平行”的充分不必要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.左、右焦点分别为F1、F2的椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与焦点为F的抛物线C2:x2=2y相交于A、B两点,若四边形ABF1F2为矩形,且△ABF的周长为3+2$\sqrt{2}$.
(1)求椭圆C1的方程;
(2)过椭圆C1上一动点P(不在x轴上)作圆O:x2+y2=1的两条切线PC、PD,切点分别为C、D,直线CD与椭圆C1交于E、G两点,O为坐标原点,求△OEG的面积S△OEG的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x3+ax2+2在x=1时取得极值.
(1)求a;
(2)求f(x)在$[-\frac{1}{2},2]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,定义在[-1,2]上的函数f(x)的图象为折线段ACB,
(1)求函数f(x)的解析式;
(2)请用数形结合的方法求不等式f(x)≥log2(x+1)的解集,不需要证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为$\sqrt{2}-1$,求椭圆的方程$\frac{x^2}{2}+{y^2}=1或\frac{y^2}{2}+{x^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|x+2≥0,x∈R},集合$B=\left\{{x|\frac{x-1}{x+1}≥2}\right\}$.
(1)求集合A∩B,A∪B;
(2)求集合(∁uA)∩B.

查看答案和解析>>

同步练习册答案