精英家教网 > 高中数学 > 题目详情

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C1的方程为ρsin(θ+ )+2 =0,曲线C2的参数方程为 (θ为参数).
(1)将C1的方程化为直角坐标方程;
(2)若点Q为C2上的动点,P为C1上的动点,求|PQ|的最小值.

【答案】
(1)解:曲线C1的方程为ρsin(θ+ )+2 =0,展开可得: + +2 =0,可得直角标准方程: y+x+4 =0
(2)解:设点Q(2cosθ,2sinθ),则点Q到直线C1的距离d= = +2 ≥2 ﹣2,当且仅当 =﹣1时取等号.

∴|PQ|的最小值为2 ﹣2


【解析】(1)曲线C1的方程为ρsin(θ+ )+2 =0,展开可得: + +2 =0,利用 代入即可得出直角标准方程.(2)设点Q(2cosθ,2sinθ),可得点Q到直线C1的距离d= +2 ,利用三角函数的单调性值域即可得出最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)当x>0时,函数g(x)= (a>0)的最小值总大于函数f(x),试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: =1(α>b>0)经过点( ),且原点、焦点,短轴的端点构成等腰直角三角形.
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线(切线斜率存在)与椭圆C恒有两个交点A,B.且 ?若存在,求出该圆的方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.

(1)求证:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定圆,动圆过点 且与圆相切,记圆心的轨迹为

(1)求曲线的方程;

(2)已知直线 交圆两点.是曲线上两点,若四边形的对角线,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面立角坐标系中,过点的圆的圆心轴上,且与过原点倾斜角为的直线相切.

(1)求圆的标准方程;

(2)在直线上,过点作圆的切线,切点分别为,求经过四点的圆所过的定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】驻马店市政府委托市电视台进行“创建森林城市”知识问答活动,市电视台随机对该市15~65岁的人群抽取了人,绘制出如图1所示的频率分布直方图,回答问题的统计结果如表2所示.

(1)分别求出的值;

(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人?

(3)在(2)的条件下,电视台决定在所抽取的7人中随机选2人颁发幸运奖,求所抽取的人中第二组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位: )进行了抽样调查,得到的频率分布直方图如图所示.已知身高在之间的男生人数比身高在之间的人数少1人.

(1)若身高在以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?

(2)从所抽取的样本中身高在的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185的概率是多少?

查看答案和解析>>

同步练习册答案