【题目】如图,四边形ABCD为正方形,,且,平面BCE.
(1)证明:平面平面BDFE;
(2)求二面角的余弦值.
【答案】(1)证明见解析 (2)
【解析】
(1)先推导出,,证得平面ABCD,进而得到,由此能力证明平面BDFE,从而得到平面平面BDFE;
(2)以D为坐标原点建立如图所示的空间直角坐标系,分别求得平面的法向量,结合向量的夹角公式,即可求解.
(1)由题意,因为四边形ABCD为正方形,.
,,.
又平面BCE,.
,平面ABCD,.
又,平面BDFE,
平面AEC,平面平面BDFE.
(2)平面ABCD,,所以平面ABCD,
以D为坐标原点建立如图所示的空间直角坐标系,令,
则,,,,
所以,,,
设平面AFC的法向量为,则,
令,则,所以,
设平面EFC的法向量为,则,
令,则,,所以,
.
因为二面角为锐角,所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为,且经过点.
(1)求椭圆的方程;
(2)设是椭圆与轴正半轴的交点,上是否存在两点,使得是以为直角顶点的等腰直角三角形?若存在,请说明满足条件的的个数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示:
(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性,试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障的概率为.已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元.该工厂每月需支付给每名维修工人万元的工资.
(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有名维修工人.
(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com