精英家教网 > 高中数学 > 题目详情

【题目】在△AOB中,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,△AOC为钝角三角形的概率是(
A.0.2
B.0.4
C.0.6
D.0.8

【答案】B
【解析】解:由题意知本题是一个等可能事件的概率, 试验发生包含的事件对应的是长度为5的一条线段,
满足条件的事件是组成钝角三角形,包括两种情况
第一种∠ACO为钝角,这种情况的边界是∠ACO=90°的时候,此时OC=1
∴这种情况下,满足要求的0<OC<1.
第二种∠OAC为钝角,这种情况的边界是∠OAC=90°的时候,此时OC=4
∴这种情况下,满足要求4<OC<5.
综合两种情况,若△AOC为钝角三角形,则0<OC<1或4<OC<5.
∴概率P= =0.4,
故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次数学考试中,第22题和第23题为选做题,规定每位考生必须且只须在其中选做一题,现有甲、乙、丙、丁4名考生参加考试,其中甲、乙选做第22题的概率均为,丙、丁选做第22题的概率均为

(Ⅰ)求在甲选做第22题的条件下,恰有两名考生选做同一道题的概率;

(Ⅱ)设这4名考生中选做第22题的学生个数为X,求X的概率分布及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限(单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:

(1)请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程

(2)若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论求该批空调使用年限的最大值.

参考公式:最小二乘估计线性回归方程中系数计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴非负半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的极坐标方程及直线的直角坐标方程;

(2)设直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0).
(1)若 ,求c的值;
(2)若c=5,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】静宁县是甘肃苹果栽培第一大县,中国著名优质苹果基地和重要苹果出口基地.静宁县海拔高、光照充足、昼夜温差大、环境无污染,适合种植苹果.“静宁苹果”以色泽鲜艳、质细汁多,酸甜适度,口感脆甜、货架期长、极耐储藏和长途运输而著名.为检测一批静宁苹果,随机抽取50个,其重量(单位:克)的频数分布表如下:

分组(重量)

[80,85)

[85,90)

[90,95)

[95,100)

频数(个)

5

10

20

15


(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,⊥平面,且四边形是平行四边形.

(1)求证:

(2)当点的什么位置时,使得∥平面,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十三届全运会将2017年9月在天津举行,组委会在2017年1月对参加接待服务的10名宾馆经理进行为期半月的培训,培训结束,组织了一次培训结业测试,10人考试成绩如下(满分100分):

75 84 65 90 88 95 78 85 98 82

(Ⅰ)以成绩的十位为茎个位为叶作出本次结业成绩的茎叶图,并计算平均成绩与成绩的中位数

(Ⅱ)从本次成绩在85分以上(含85分)的学员中任选2人,2人成绩都在90分以上(含90分)的概率.

查看答案和解析>>

同步练习册答案