精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=|2x+1|+|3x-2|,且不等式f(x)≤5的解集为$\{x|-\frac{4a}{5}≤x≤\frac{3b}{5}\}$,a,b∈R.
(1)求a,b的值;
(2)对任意实数x,都有|x-a|+|x+b|≥m2-3m+5成立,求实数m的最大值.

分析 (1)通过若$x≤-\frac{1}{2}$,若$-\frac{1}{2}<x<\frac{2}{3}$,若$x≥\frac{2}{3}$,化简不等式求出解集,利用已知条件,求解a,b.
(2)由(1)知a=1,b=2,求出绝对值的最值,得到m2-3m+5≤3,然后求解实数m的最大值.

解答 解:(1)若$x≤-\frac{1}{2}$,原不等式可化为-2x-1-3x+2≤5,解得$x≥-\frac{4}{5}$,即$-\frac{4}{5}≤x≤-\frac{1}{2}$;
若$-\frac{1}{2}<x<\frac{2}{3}$,原不等式可化为2x+1-3x+2≤5,解得x≥-2,即$-\frac{1}{2}<x<\frac{2}{3}$;
若$x≥\frac{2}{3}$,原不等式可化为2x+1+3x-2≤5,解得$x≤\frac{6}{5}$,即$\frac{2}{3}≤x≤\frac{6}{5}$;
综上所述,不等式|2x+1|+|3x-2|≤5的解集为$[-\frac{4}{5},\frac{6}{5}]$,所以a=1,b=2.
(2)由(1)知a=1,b=2,所以|x-a|+|x+b|=|x-1|+|x+2|≥|x-1-x-2|=3,
故m2-3m+5≤3,m2-3m+2≤0,所以1≤m≤2,即实数m的最大值为2.

点评 本题考查函数恒成立,绝对值不等式的解法,考查分类讨论思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.复平面内,若复数z=a2(1+i)-a(4+i)-6i所对应的点在第二象限,则实数a的取值范围是(  )
A.(0,3)B.(3,4)C.(-2,0)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从1,2,3,4,5中任取两个不同的数,组成点(x,y),则这些点在直线x+y-5=0上方的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{10}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的两个焦点为F1,F2,点B1为其短轴的一个端点,满足$|{\overrightarrow{{B_1}{F_1}}+\overrightarrow{{B_1}{F_2}}}|=2|{\overrightarrow{{B_1}{F_1}}}|+|{\overrightarrow{{B_1}{F_2}}}|=2,\overrightarrow{{B_1}{F_1}}•\overrightarrow{{B_1}{F_2}}$=-2.
(1)求椭圆C的方程;
(2)过点M(1,0)作两条互相垂直的直线l1,l2,设l1与椭圆交于点A,B,与椭圆交于C,D,求$\overrightarrow{AC}•\overrightarrow{DB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,∠A=$\frac{2π}{3}$,AB=4,△ABC的面积为$2\sqrt{3}$,则△ABC的外接圆的半径为$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个函数中,以π为最小正周期,且在区间($\frac{π}{2}$,π)上单调递减函数的是(  )
A.y=sin2xB.y=2|cosx|C.$y=cos\frac{x}{2}$D.y=tan(-x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知一圆锥表面积为15πcm2,且它的侧面展开图是一个半圆,则圆锥的底面半径为$\sqrt{5}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(x)=ln(x+1)-x-ax,若f(x)在x=1处取得极值,则a的值为$-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案