精英家教网 > 高中数学 > 题目详情
(2012•台州一模)曲线y=x3-2x+4在点(1,3)处的切线的斜率为(  )
分析:求曲线在点处得切线的斜率,就是求曲线在该点处得导数值,先求导函数,然后将点的坐标代入即可求得结果.
解答:解:y=x3-2x+4的导数为:y=3x2-2,
将点(1,3)的坐标代入,即可得斜率为:k=1.
故选B.
点评:本题考查了导数的几何意义,它把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•台州一模)若椭圆和双曲线具有相同的焦点F1,F2,离心率分别为e1,e2,P是两曲线的一个公共点,且满足PF1⊥PF2,则
1
e
2
1
+
1
e
2
2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州一模)设复数Z的共轭复数为
.
Z
,i为虚数单位.若Z=1+i,则(3+2
.
Z
)i=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州一模)已知|
OA
|=|
OB
|=2,点C在线段AB上,且|
OC
|的最小值为1,则|
OA
-t
OB
|(t∈R)的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州一模)tan330°=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州一模)若a,b为实数,则“a+b≤1”是“a≤
1
2
b≤
1
2
”的(  )

查看答案和解析>>

同步练习册答案