精英家教网 > 高中数学 > 题目详情

【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

B餐厅分数频数分布表

分数区间

频数

[0,10)

2

[10,20)

3

[20,30)

5

[30,40)

15

[40,50)

40

[50,60]

35


(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

【答案】解:(Ⅰ)由A餐厅分数的频率分布直方图,得:对A餐厅评分低于30分的频率为(0.003+0.005+0.012)×10=0.2,

所以,对A餐厅评分低于30的人数为100×0.2=20;

(Ⅱ)对B餐厅评分在[0,10)范围内的有2人,设为M1、M2

对B餐厅评分在[10,20)范围内的有3人,设为N1、N2、N3

从这5人中随机选出2人的选法为:

(M1,M2),(M1,N1),(M1,N2),(M1,N3),

(M2,N1),(M2,N2),(M2,N3),

(N1,N2),(N1,N3),(N2,N3)共10种.

其中,恰有1人评分在[0,10)范围内的选法为:

(M1,N1),(M1,N2),(M1,N3),

(M2,N1),(M2,N2),(M2,N3)共6种;

故2人中恰有1人评分在[0,10)范围内的概率为P= =

(Ⅲ)从两个餐厅得分低于30分的人数所占的比例来看:

由(Ⅰ)得,抽样的100人中,A餐厅评分低于30的人数为20,

所以,A餐厅得分低于30分的人数所占的比例为20%;

B餐厅评分低于30的人数为2+3+5=10,

所以,B餐厅得分低于30分的人数所占的比例为10%;

所以会选择B餐厅用餐.


【解析】(Ⅰ)由A餐厅分数的频率分布直方图求得频率与频数;(Ⅱ)用列举法求基本事件数,计算对应的概率值;(Ⅲ)从两个餐厅得分低于30分的人数所占的比例分析,即可得出结论.
【考点精析】利用频率分布直方图对题目进行判断即可得到答案,需要熟知频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中, ,角A的平分线AD交BC于点D,设∠BAD=α,
(Ⅰ)求sinC;
(Ⅱ)若 ,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1的棱和六个面的对角线共24条,其中与体对角线AC1垂直的有条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为菱形,E,F分别是BB1 , DD1的中点,G为AE的中点且FG=3,则△EFG的面积的最大值为(
A.
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,某物流公司每天的业务中,从甲地到乙地的可配送的货物量X(40≤X<200,单位:件)的频率分布直方图,如图所示,将频率视为概率,回答以下问题.
(1)求该物流公司每天从甲地到乙地平均可配送的货物量;
(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每 趟最多只能装载40 件货物,满载发车,否则不发车.若发车,则每辆车每趟可获利1000 元;若未发车,
则每辆车每天平均亏损200 元.为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货
车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,则k的取值范围是(
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P是线段BD1上的动点.当△PAC在平面DC1 , BC1 , AC上的正投影都为三角形时,将它们的面积分别记为S1 , S2 , S3
(i)当BP= 时,S1S2(填“>”或“=”或“<”);
(ii) S1+S2+S3的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}的前n项和为Sn , 满足an+1= ,n∈N* , 且a2 , a5 , a14构成等比数列.
(1)求数列{an}的通项公式;
(2)若对一切正整数n都有 + +…+ ,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列{an},记T={x|x=aj﹣ai , i<j},若数列{an}满足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*且m>k),必有am+1﹣ak+1=t”,则称数列{an}具有性质P(t). (Ⅰ)若数列{an}满足 判断数列{an}是否具有性质P(2)?是否具有性质P(4)?
(Ⅱ)求证:“T是有限集”是“数列{an}具有性质P(0)”的必要不充分条件;
(Ⅲ)已知{an}是各项为正整数的数列,且{an}既具有性质P(2),又具有性质P(5),求证:存在整数N,使得aN , aN+1 , aN+2 , …,aN+k , …是等差数列.

查看答案和解析>>

同步练习册答案