精英家教网 > 高中数学 > 题目详情

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

图1:乙套设备的样本的频率分布直方图

(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

,求的期望.

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

.

【答案】(1)见解析;(2)见解析;(3)

【解析】试题分析:(1)根据表1和图1即可完成填表,再由将数据代入计算得把握认为产品的质量指标值与甲、乙两套设备的选择有关

2)根据题意计算甲、乙两套设备生产的合格品的概率,乙套设备生产的产品的质量指标值与甲套设备相比较为分散,从而做出判断(3)根据题意知满足,代入即可求得结果

解析:(1)根据表1和图1得到列联表

甲套设备

乙套设备

合计

合格品

48

43

91

不合格品

2

7

9

合计

50

50

100

将列联表中的数据代入公式计算得

∴有90%的把握认为产品的质量指标值与甲、乙两套设备的选择有关

2)根据表1和图1可知,甲套设备生产的合格品的概率约为,乙套设备生产的合格品的概率约为,甲套设备生产的产品的质量指标值主要集中在[105,115)之间,乙套设备生产的产品的质量指标值与甲套设备相比较为分散.因此,可以认为甲套设备生产的合格品的概率更高,且质量指标值更稳定,从而甲套设备优于乙套设备.

3)由题知, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)求的值.

)求函数在区间上的最大值和最小值,及相应的的值.

)求函数在区间的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点分别为,且与短轴的一个端点Q构成一个等腰直角三角形,点P)在椭圆上,过点作互相垂直且与x轴不重合的两直线ABCD分别交椭圆ABCDMN分别是弦ABCD的中点

(1)求椭圆的方程

(2)求证:直线MN过定点R

(3)面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),.

1)若,曲线在点处的切线与轴垂直,求的值;

2)若,试探究函数的图象在其公共点处是否存在公切线.若存在,研究值的个数;,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆的顶点 为椭圆的左焦点且椭圆经过点.

1)求椭圆的方程

2)过椭圆的右顶点作斜率为的直线交椭圆于另一点连结并延长交椭圆于点的面积取得最大值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数,如果各项均为正数的数列满足:对任意正整数

总成立,那么称是“数列”

1是各项均为正数的等比数列,判断是否为“数列”,并说明理由

2)若既是“数列”,又是“数列”,求证: 是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是正三棱柱,DAC中点.

(1)证明: 平面;

(2)若,求二面角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在点(1,1)处的切线方程为xy2.

(1)ab的值;

(2)对函数f(x)定义域内的任一个实数x不等式f(x)0恒成立求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利润.

(1)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;

(2)估计该天食堂利润不少于760元的概率.

查看答案和解析>>

同步练习册答案