精英家教网 > 高中数学 > 题目详情
13.在2013年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:
价格x99.51010.511
销售量y1110865
通过分析,发现销售量y对商品的价格x具有线性相关关系.
(1)求销售量y对商品的价格x的回归直线方程;
(2)欲使销售量为12,则价格应定为多少.
附:在回归直线$y=\hat bx+\hat a$中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

分析 (1)首先做出两组数据的平均数,利用最小二乘法得到线性回归方程的系数,写出线性回归方程;
(2)令y=-3.2x+40=12,可预测销售量为12件时的售价.

解答 解:(1)由题意知$\overline{x}$=10,$\overline{y}$=8,
∴b=$\frac{99+95+80+63+11-5×10×8}{81+90.25+100+110.25+121-5×100}$=-3.2,a=8-(-3.2)×10=40,
∴线性回归方程是y=-3.2x+40;
(2)令y=-3.2x+40=12,可得x=8.75,
∴预测销售量为12件时的售价是8.75元.

点评 本题考查求线性回归方程,考查学生的计算能力,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.抛掷红、蓝两个骰子,事件A=“红骰子出现4点”,事件B=“蓝骰子出现的点数是偶数”,求P(A|B)=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax-(1+a)lnx-$\frac{1}{x}$,其中a为实数.
(1)求函数f(x)的极大值点和极小值点;
(2)已知函数f(x)的图象在x=2处的切线与x轴平行,g(x)=$\left\{\begin{array}{l}{1-bx(1≤x≤2)}\\{(1-b)x-1(2<x≤3)}\end{array}\right.$.且对任意x1∈(0,e],存在x2∈[1,3],使得f(x1)+g(x2)≤0,求实数b的最小值(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知方程ex-x+a=0(a为常数)有两个不等实根,则实数a的取值范围是(  )
A.(0,1)B.(-1,0)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,E为矩形ABCD所在平面外一点,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)G为矩形ABCD对角线的交点,求三棱锥C-BGF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线方程是y=1.23x+0.08.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设一个线性回归方程y=3-2x,变量x增加一个单位时(  )
A.y平均增加2个单位B.y平均减少3个单位
C.y平均减少2个单位D.y平均增加3个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某中学为了解初三年级学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:

已知该项目评分标准为:

(1)求上述20名女生得分的中位数和众数;
(2)若男生投掷距离大于等于86分米为优秀,从上述20名男生中,随机抽取2名,求抽取的2名男生中至少有1名优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,正四面体S-ABC中,其棱长为2.
(1)求该几何体的体积;
(2)已知M,N分别是棱AB和SC的中点.求直线BN和直线SM所成的角的余弦值.

查看答案和解析>>

同步练习册答案