精英家教网 > 高中数学 > 题目详情

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

(1);(2)长轴长的最小值为.

解析试题分析:(1)首先求得抛物线方程为 .
设直线方程为,并设
利用,得到 ;
联立,可得,应用韦达定理得到 ,
从而得到,求得直线方程.
(2)可求得对称点
代入抛物线中可得:,直线方程为,考虑到对称性不妨取,
椭圆设为联立直线、椭圆方程并消元整理可得
,可得 ,即得解.
(1)由题知抛物线方程为 。                 2分
设直线方程为,并设
因为,所以.
联立,可得,有            4分
解得:,所以直线方程为:  6分 
(2)可求得对称点,            8分
代入抛物线中可得:,直线方程为,考虑到对称性不妨取,
设椭圆方程为,联立直线方程和椭圆方程并消元整理得,       10分
因为椭圆与直线有交点,所以
即:,解得        12分

∴长轴长的最小值为..                        13分
考点:抛物线及其标准方程,椭圆方程,直线与圆锥曲线的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为.
(1)求轨迹为的方程
(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆经过点
(1)求椭圆的方程及其离心率;
(2)过椭圆右焦点的直线(不经过点)与椭圆交于两点,当的平分线为 时,求直线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分,(1)小问4分,(2)小问8分)已知为椭圆上两动点,分别为其左右焦点,直线过点,且不垂直于轴,的周长为,且椭圆的短轴长为
(1)求椭圆的标准方程;
(2)已知点为椭圆的左端点,连接并延长交直线于点.求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,如果点M在直线AB的上方,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,求过点及抛物线与轴两个交点的圆的方程;
(3)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.

查看答案和解析>>

同步练习册答案