精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,轴正半轴为极轴)中,圆的方程为

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求.

【答案】解:()由

)将的参数方程代入圆C的直角坐标方程,得

由于,故可设是上述方程的两实根,

所以故由上式及t的几何意义得:

|PA|+|PB|==

【解析】

试题分析:(1)利用极坐标方程和直角坐标方程的互化公式即可求解;(2)将直线的参数方程代入圆的直角坐标方程,得到关于的一元二次方程,利用的几何意义和根与系数的关系进行求解.

试题解析:(1)

.

(2)将直线的参数方程代入圆C的直角坐标方程,得

由于,故可设是上述方程的两实根,

所以又直线过点故由上式及t的几何意义得:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣lnx.
(1)若f(x)在x=3处取得极值,求实数a的值;
(2)若f(x)≥5﹣3x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上的三点 .

(1)求以 为焦点且过点 的椭圆的标准方程

(2)设点 关于直线 的对称点分别为 求以 为焦点且过点 的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下四个命题,其中正确的是( )

A. 由独立性检验可知,有的把握认为物理成绩与数学成绩有关,若某人数学成绩优秀,则他有的可能物理成绩优秀;

B. 两个随机变量相关性越强,则相关系数的绝对值越接近于

C. 在线性回归方程中,当变量每增加一个单位时,变量平均增加个单位

D. 线性回归方程对应的直线至少经过样本数据点中的一个点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C: 的离心率 ,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)选修4﹣2:矩阵与变换
设曲线2x2+2xy+y2=1在矩阵A= (a>0)对应的变换作用下得到的曲线为x2+y2=1.
(Ⅰ)求实数a,b的值.
(Ⅱ)求A2的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图象在点处的切线与直线平行.

(1)求的值;

(2)若函数,且在区间上是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则不等式f(x)≥x2的解集是(
A.[﹣1,1]
B.[﹣2,2]
C.[﹣2,1]
D.[﹣1,2]

查看答案和解析>>

同步练习册答案