【题目】写出下列命题的否定,并判断所得命题的真假:
(1);
(2)有的三角形是等边三角形;
(3)有一个偶数是素数
(4)任意两个等边三角形都相似;
(5).
【答案】(1),假命题;
(2)所有的三角形都不是等边三角形,假命题;
(3)任意一个偶数都不是素数,假命题;
(4)存在两个等边三角形不相似,假命题;
(5),真命题.
【解析】
根据全称命题的否定为特称命题,特称命题的否定为全称命题,写出其否定,再判断其真假.
解:(1),是特称命题,
所以其否定为:,.
当时,,故是假命题;
(2)有的三角形是等边三角形,是特称命题,
所以其否定为:所有的三角形都是等边三角形,显然是假命题;
(3)“有一个偶数是素数”是特称命题,
所以其否定为:任意偶数都不是素数.
因为是偶数,且是素数,故是假命题;
(4)“任意两个等边三角形都相似”,是全称命题,
所以其否定为:有些等边三角形不相似.
因为任意等边三角形其三个角都相等,都为,故任意两个等边三角都相似,是真命题,
故命题“有些等边三角形不相似.”是假命题.
(5),是特称命题,
所以其否定为:
,
方程无实数根,即对任意实数成立,故是真命题.
科目:高中数学 来源: 题型:
【题目】已知圆和抛物线,圆与抛物线的准线交于、两点,的面积为,其中是的焦点.
(1)求抛物线的方程;
(2)不过原点的动直线交该抛物线于,两点,且满足,设点为圆上任意一动点,求当动点到直线的距离最大时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数的表达式;
(2)当销售商一次订购450件服装时,该服装厂获得的利润是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以5cm为单位长度作单位圆,分别作出,,,,角的正弦线余弦线和正切线,量出它们的长度,写出这些角的正弦余弦和正切的近似值,再使用科学计算器求这些角的正弦余弦和正切,并进行比较.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于与不同四点,直线的斜率满足.已知当与轴重合时,,.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在定点,使得为定值?若存在,求出点坐标并求出此定值;若不存在,说明理由.
【答案】(Ⅰ);(Ⅱ),和.
【解析】试题分析:(1)当与轴重合时,垂直于轴,得,得,从而得椭圆的方程;(2)由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,所以把坐标化,可得点的轨迹是椭圆,从而求得定点和点.
试题解析:当与轴重合时,, 即,所以垂直于轴,得,,, 得,椭圆的方程为.
焦点坐标分别为, 当直线或斜率不存在时,点坐标为或;
当直线斜率存在时,设斜率分别为, 设由, 得:
, 所以:,, 则:
. 同理:, 因为
, 所以, 即, 由题意知, 所以
, 设,则,即,由当直线或斜率不存在时,点坐标为或也满足此方程,所以点在椭圆上.存在点和点,使得为定值,定值为.
考点:圆锥曲线的定义,性质,方程.
【方法点晴】本题是对圆锥曲线的综合应用进行考查,第一问通过两个特殊位置,得到基本量,,得,,从而得椭圆的方程,第二问由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,本题的关键是从这个角度出发,把坐标化,求得点的轨迹方程是椭圆,从而求得存在两定点和点.
【题型】解答题
【结束】
21
【题目】已知,,.
(Ⅰ)若,求的极值;
(Ⅱ)若函数的两个零点为,记,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com