精英家教网 > 高中数学 > 题目详情

如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面ABC是正三角形.

(1)当正视图方向与向量的方向相同时,画出三棱锥A—BCD的三视图;(要求标出尺寸)
(2)求二面角B—AC—D的余弦值;
(3)在线段AC上是否存在一点E,使ED与平面BCD成30°角? 若存在,确定点E的位置;若不存在,说明理由.

(1)详见解析;(2);(3)存在且

解析试题分析:(1)画三视图时要注意:正视图看到的是几何体的长和高,侧视图看到的是几何体的宽和高,俯视图看到的是几何体的长和宽,同时要想象自己身处教室,前面、右面、地面有墙,将几何体正投影到这三个方向;(2)建立适当的空间直角坐标系,需选择两两垂直的三条直线,然后把涉及到的点用坐标表示,如图所示建立坐标系,则,求出面和面的法向量,然后求法向量的夹角,进而求出二面角的余弦值;(3)利用空间直角坐标系求直线和平面所成的角,先求平面的法向量和直线方向向量夹角的余弦值,即直线和平面所成角的正弦值,该题利用三点共线,可设出点,然后计算和平面法向量,根据它们夹角余弦值等于列式,求.
试题解析:(1) 三棱锥A—BCD的三视图如右图所示:

(2)以为坐标原点,分别以和过点垂直于面的直线为轴,建立如图所示的空间直角坐标系,则设平面ABC的法向量为,,则
,∴,令,则,同理,可求得平面ACD的一个法向量为,所以=.所以二面角B—AC—D的余弦值

(3)设,由,得,面的一个法向量,所以,解得,所以存在,即时,ED与平面BCD成30°角.
考点:1、三视图;2、二面角的求法;3、直线和平面所成的角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.

(I)求三棱锥E—PAD的体积;
(II)试问当点E在BC的何处时,有EF//平面PAC;
(1lI)证明:无论点E在边BC的何处,都有PEAF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,侧棱与底面垂直,分别是的中点

(1)求证:∥平面
(2)求证:⊥平面
(3)求三棱锥的体积的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,分别为的中点,上的点,且

(I)证明:∥平面
(Ⅱ)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正三棱台中,分别是上、下底面的中心.已知
 
(1)求正三棱台的体积;
(2)求正三棱台的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.

(Ⅰ)证明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图、正视图、侧视图、俯视图如图所示,M、N分别为A1B、B1C1的中点.

(1)求证:MN//平面ACC1A1
(2)求证:MN^平面A1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱锥的三视图如图所示.

(Ⅰ)求证:是直角三角形;
 求三棱锥是全面积;
(Ⅲ)当点在线段上何处时,与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,设矩形ABCD(AB>AD)的周长为24,把它关于AC折起来,AB折过去后,交DC于点P. 设AB="x," 求△的最大面积及相应的x值.

查看答案和解析>>

同步练习册答案