【题目】如图,菱形ABCD的边长为2,∠BAD=60°,M为DC的中点,若N为菱形内任意一点(含边界),则 的最大值为( )
A.3
B.2
C.6
D.9
科目:高中数学 来源: 题型:
【题目】已知△ABC内角A,B,C的对边分别是a,b,c,且满足a( sinC+cosC)=b+c.
(I) 求角A的大小;
(Ⅱ)已知函数f(x)=sin(ωx+A)的最小正周期为π,求f(x)的减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣x+ +1(a∈R).
(1)讨论f(x)的单调性与极值点的个数;
(2)当a=0时,关于x的方程f(x)=m(m∈R)有2个不同的实数根x1 , x2 , 证明:x1+x2>2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F分别在BC,AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折叠后的线段AD上是否存在一点P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,说明理由;
(Ⅱ)求三棱锥A﹣CDF的体积的最大值,并求此时二面角E﹣AC﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直二面角中,四边形ABCD是边长为2的正方形,,F为CE上的点,且平面ACE.
Ⅰ求证:平面BCE;
Ⅱ求二面角的余弦值;
Ⅲ求点D到平面ACE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
若函数有唯一零点,则以下四个命题中正确的是______(填写正确序号)
①. ②.函数在处的切线与直线平行
③.函数在上的最大值为
④.函数在 上单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+2n;数列{bn}是公比大于1的等比数列,且满足b1+b4=9,b2b3=8.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(x﹣a)2lnx,a∈R
(1)证明:函数f(x)=(x﹣a)2lnx,a∈R的图象恒经过一个定点;
(2)若函数h(x)= f′(x)在(0,+∞)有定义,且不等式h(x)≤0在(0,+∞)上有解,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com