【题目】已知函数f(x)=xlnx+1.
(1)求函数f(x)的单调区间;
(2)求函数f(x)的在区间[t,t+1](t>0)的最小值.
【答案】(1)f(x)的递减区间为(0,),递增区间(,+∞);(2)当t∈(0,]时,f(x)的最小值为1,当t∈(,+∞)时, f(x)的最小值为tlnt+1.
【解析】
(1)求出导函数,分别解导函数大于零和小于零不等式得解;
(2)结合(1)已得单调性,分类讨论求最值.
(1)f(x)=xlnx+1, =lnx+1=lnx﹣ln,x>0,
由得,由得
当x∈(0,)时,f(x)递减;
当x∈(,+∞)时,f(x)递增;
故f(x)的递减区间为(0,),递增区间(,+∞);
(2)由(1)知,当x∈(0,)时,f(x)递减;当x∈(,+∞)时,f(x)递增;
f(x)的最小值为f()=1,
当t∈(0,]时,t+1∈[1,1]时,f(x)在间[t,t+1](t>0)的最小值为f()=1,
当t∈(,+∞)时,t+1∈(1,+∞),f(x)在间[t,t+1]递增,f(x)的最小值为f(t)=tlnt+1.
综上所述:当t∈(0,]时,f(x)的最小值为1,当t∈(,+∞)时, f(x)的最小值为tlnt+1.
科目:高中数学 来源: 题型:
【题目】
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)
①g(x)的最小正周期为4π;
②g(x)在区间[0,]上单调递减;
③g(x)图象的一条对称轴为x;
④g(x)图象的一个对称中心为(,0).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥A-BCDE,其中AC=BC=2,AC⊥BC,CD//BE且CD=2BE,CD⊥平面ABC,F为AD的中点.
(1)求证:EF//平面ABC;
(2)设M是AB的中点,若DM与平面ABC所成角的正切值为,求平面ACD与平面ADE夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一楼房高为米,某广告公司在楼顶安装一块宽为米的广告牌,为拉杆,广告牌的倾角为,安装过程中,一身高为米的监理人员站在楼前观察该广传牌的安装效果:为保证安全,该监理人员不得站在广告牌的正下方:设米,该监理人员观察广告牌的视角.
(1)试将表示为的函数;
(2)求点的位置,使取得最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线l的方程为(a﹣1)x+y+a+3=0,(a∈R).
(1)若直线l在两坐标轴上截距的绝对值相等,求直线l的方程;
(2)若直线l不经过第一象限,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy内,点()在椭圆E:(a>0,b>0),椭圆E的离心率为,直线l过左焦点F且与椭圆E交于A、B两点
(1)求椭圆E的标准方程;
(2)若动直线l与x轴不重合,在x轴上是否存在定点P,使得PF始终平分∠APB?若存在,请求出点P的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D为PB中点,PC=3PE.
(1)求证:平面ADE⊥平面PBC;
(2)在AC上是否存在一点M,使得MB∥平面ADE?若存在,请确定点M的位置,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com