精英家教网 > 高中数学 > 题目详情
如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)已知f(x)=ln(1+ex)-x是定义域在R上的减函数,且A、B、C是其图象上三个不同的点,求证:△ABC是钝角三角形.
(Ⅰ)函数f(x)是凹函数,证明如下:设x1,x2∈R,且x1<x2
f(x1)+f(x2)-2f(
x1+x2
2
)

=ln(1+ex1)+ln(1+ex2)-x1-x2-2[ln(1+e
x1+x2
2
)-
x1+x2
2
]

=ln(1+ex1)(1+ex2)-ln(1+e
x1+x2
2
)2

=ln(1+ex1+ex2+ex1+x2)-ln(1+2e
x1+x2
2
+ex1+x2)

ex1>0,ex2>0,且x1x2
ex1+ex2>2
ex1ex2
=2e
x1+x2
2

1+ex1+ex2+ex1+x2>1+2e
x1+x2
2
+ex1+x2

ln(1+ex1+ex2+ex1+x2)>ln(2+2e
x1+x2
2
+ex1+x2)

ln(1+ex1+ex2+ex1+x2)-ln(1+2e
x1+x2
2
+ex1+x2)>0

f(x1)+f(x2)>2f(
x1+x2
2
)
∴f(x)是凹函数(7分)
(Ⅱ)证明:(Ⅱ)设A(x1,y1),B(x2,y2),C((x3,y3),
且x1<x2<x3,∵f(x)是x∈R上的单调减函数∴f(x1)>f(x2)>f(x3
BA
BC
=(x1-x2)(x3-x2)+(f(x1)-f(x2))(f(x3)-f(x2))

∵x1-x2<0,x3-x2>0,f(x1)-f(x2)>0,f(x3)-f(x2)<0
BA
BC
<0
,∴cosB<0,∠B为钝角
故△ABC为钝角三角形.(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•海珠区二模)已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函数g(x)的单调递减区间为(-
13
,1)
,求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天河区三模)设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=Inx+
b+2x+1
(x>1)
,其中b为实数.
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区二模)对于定义域为A的函数f(x),如果任意的x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),则称函数f(x)是A上的严格增函数;函数f(k)是定义在N*上,函数值也在N*中的严格增函数,并且满足条件f(f(k))=3k.
(Ⅰ)判断函数f(3x)=2×3x(x∈N)是否是N上的严格增函数;
(Ⅱ)证明:f(3k)=3f(k);
(Ⅲ)是否存在正整数k,使得f(k)=2012,若存在求出k值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区一模)对于定义域为A的函数f(x),如果任意的x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),则称函数f(x)是A上的严格增函数;函数f(k)是定义在N*上,函数值也在N*中的严格增函数,并且满足条件f(f(k))=3k.
(Ⅰ)证明:f(3k)=3f(k);
(Ⅱ)求f(3k-1)(k∈N*)的值;
(Ⅲ)是否存在p个连续的自然数,使得它们的函数值依次也是连续的自然数;若存在,找出所有的p值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武进区模拟)函数f(x)=
1
2
ax2-bx-lnx
,a>0,f'(1)=0.
(1)①试用含有a的式子表示b;②求f(x)的单调区间;
(2)对于函数图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l∥AB,则称AB存在“伴随切线”,当x0=
x1+x2
2
时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B,使得AB存在“中值伴随切线”?若存在,求出A、B的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案