精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.

(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有
(3)当为何值时,与平面所成角的大小为45°.
(1)EF//面PAC (2)因PA⊥底面ABCD,所以DA⊥PA,又DA⊥AB,所以DA⊥面PAB,又DA//CB,所以CB⊥面PAB所以,因为AF⊥PB所以AF⊥面PBC有 (3)

试题分析:⑴当E是BC中点时,因F是PB的中点,所以EF为的中位线,
故EF//PC,又因面PAC,面PAC,所以EF//面PAC     4分
⑵证明:因PA⊥底面ABCD,所以DA⊥PA,又DA⊥AB,所以DA⊥面PAB,
又DA//CB,所以CB⊥面PAB,而面PAB,所以
又在等腰三角形PAB中,中线AF⊥PB,PBCB=B,所以AF⊥面PBC.
而PE面PBC,所以无论点E在BC上何处,都有      8分
⑶以A为原点,分别以AD、AB、AP为x\y\z轴建立坐标系,设
,设面PDE的法向量为
,得,取,又
则由,得,解得.
故当时,PA与面PDE成角         12分
点评:证明线面平行时常借助于已知的中点转化为线线平行,第三问求线面角采用空间向量的方法思路较简单,只需求出直线的方向向量与平面的法向量,代入公式即可
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,矩形中,上的点,且,AC、BD交于点G.

(1)求证:
(2)求证;
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两个不同的平面,是不同的直线,下列命题不正确的是
A.若
B.若
C.若
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个多面体的直观图和三视图如图所示,其中分别是的中点.
(1)求证:平面
(2)在线段上(含端点)确定一点,使得∥平面,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为

(1)求证:平面ABCD丄平面ADE;
(2)求四面体BADE的体积;
(3)试判断直线OB是否与平面CDE垂直,并请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在长方形ABCD中,AB=BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当ED运动到C,则K所形成轨迹的长度为   (   )
         
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.

(1)求证:AD⊥BC;
(2)求二面角B—AC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科)(本小题满分12分)长方体中,是底面对角线的交点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面
(Ⅲ) 求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在棱长为1的正方体ABCD—A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是                       (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案