精英家教网 > 高中数学 > 题目详情
6、函数y=f(x)对于任意x、y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4,则(  )
分析:先依据函数单调性的定义判断函数的单调性,再由f(3)=f(1)+f(2)-1=f(1)+f(1)+f(1)-1-1=4,解出f(1).
解答:解:设x1>x2
则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-1-f(x2)=f(x1-x2)-1>1-1=0,
即f(x1)>f(x2),
∴f(x)为增函数.
又∵f(3)=f(1)+f(2)-1=f(1)+f(1)+f(1)-1-1=3f(1)-2,
∴f(1)=2.
故答案选  D.
点评:本题考查抽象函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)对于一切实数x,y,都有f(x+y)=f(x)+f(y),
(1)求f(0)并证明y=f(x)是奇函数;
(2)若f(1)=3,求f(-3).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)对于任意正实数x、y,都有f(xy)=f(x)•f(y),当x>1时,0<f(x)<1,且f(2)=
1
9

(1)求证:f(x)f(
1
x
)=1(x>0)

(2)判断f(x)在(0,+∞)的单调性;并证明;
(3)若f(m)=3,求正实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)对于x>0有意义,且满足条件f(2)=1,f(xy)=f(x)+f(y),f(x)是增函数.
(1)证明:f(1)=0;
(2)若f(x)+f(x-3)≥2成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的个数为(  )
①函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
②函数y=f(x)与函数y=-f(x)的图象关于直线y=0对称;
③函数y=f(x)与函数y=-f(-x)的图象关于坐标原点对称;
④如果函数y=f(x)对于一切x∈R,都有f(a+x)=f(a-x),那么y=f(x)的图象关于直线x=a对称.

查看答案和解析>>

同步练习册答案